Evaluation of 2018 Business Programs

Submitted to Independent Electricity System Operator

September 18, 2019
Foreword

This report provides an overall summary of the energy and demand savings achieved and cost effectiveness results by Independent Electricity System Operator (IESO) funded business energy efficiency programs in 2018 within the Conservation First Framework (CFF). It is intended for all parties interested in understanding the achievements of the 2018 business energy efficiency programs in Ontario. Note, only projects completed by December 31, 2018 have been included in this report. Given that projects pre-approved prior to May 1, 2019 have until December 31, 2020 to complete, the IESO will be providing addendums to this 2018 report over the next two years as 2018 initiated projects which have not been included in this report are completed.
Contents

1 Executive Summary .. 1
 1.1 Evaluation Goals and Objectives ... 1
 1.2 Business Program Results ... 1

2 Evaluation Methodology ... 4
 2.1 Impact Evaluation Methodology ... 4
 2.2 Cost Effectiveness .. 7

3 Impact Results ... 8
 3.1 Retrofit Full Cost Recovery ... 8
 3.2 Retrofit Pay for Performance ... 9
 3.3 Small Business Lighting ... 10
 3.4 High Performance New Construction ... 11
 3.5 Business Refrigeration .. 12
 3.6 Audit Funding .. 13
 3.7 Existing Building Commissioning .. 14
 3.8 PUMPSaver .. 15
 3.9 RTUsaver .. 17
 3.10 OPsaver .. 18
 3.11 High Efficiency Agricultural Pumping Program .. 19

Appendix A Business Program Impact Results .. A-1

Appendix B Business Program Cost Effectiveness Results .. B-1
List of Tables

Table 1-1: 2018 Program and Portfolio Savings ... 2
Table 1-2: 2018 Business Programs Cost Effectiveness Results 3
Table 2-1: 2018 Program Level Adjustment Factors .. 4
Table 3-1: 2018 Retrofit Program Impact Results ... 8
Table 3-2: 2018 Retrofit FCR Cost Effectiveness Results ... 9
Table 3-3: 2018 Retrofit P4P Program Impact Results ... 9
Table 3-4: 2018 Retrofit P4P Program Cost Effectiveness Results 10
Table 3-5: 2018 SBL Program Impact Results ... 10
Table 3-6: 2018 SBL Program Cost Effectiveness Results ... 11
Table 3-7: 2018 HPNC Program Impact Results ... 12
Table 3-8: 2018 HPNC Program Cost Effectiveness Results .. 12
Table 3-9: 2018 BRI Program Impact Results ... 13
Table 3-10: 2018 BRI Program Cost Effectiveness Results ... 13
Table 3-11: 2018 Audit Funding Program Impact Results .. 14
Table 3-12: 2018 Audit Funding Program Cost Effectiveness Results 14
Table 3-13: 2018 EBCx Program Impact Results ... 15
Table 3-14: 2018 EBCx Program Cost Effectiveness Results ... 15
Table 3-15: 2018 PUMPSaver Program Impact Results .. 16
Table 3-16: 2018 PUMPSaver Program Cost Effectiveness Results 16
Table 3-17: 2018 RTUsaver Program Impact Results ... 17
Table 3-18: 2018 RTUsaver Cost Effectiveness Results ... 17
Table 3-19: 2018 OPsaver Program Impact ... 18
Table 3-20: 2018 OPsaver Program Cost Effectiveness Results 18
Table 3-21: 2018 HEAP Program Impact Results .. 19
Table 3-22: 2018 HEAP Cost Effectiveness Results ... 19
Table 3-23: Business Program Energy Savings ... A-1
Table 3-24: Business Program Summer Peak Demand Savings A-2
Table 3-25: Business Program Total Resource Cost (TRC) Effectiveness B-1
Table 3-26: Business Program Program Administrator (PAC) Cost Effectiveness B-2
Table 3-27: Business Program Levelized Unit Energy Cost (LUEC) B-3
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRI</td>
<td>Business Refrigeration Incentive Program</td>
</tr>
<tr>
<td>CDM</td>
<td>Conservation Demand Management</td>
</tr>
<tr>
<td>CFF</td>
<td>Conservation First Framework</td>
</tr>
<tr>
<td>EBCx</td>
<td>Existing Building Commissioning Program</td>
</tr>
<tr>
<td>FCR</td>
<td>Full Cost Recovery</td>
</tr>
<tr>
<td>FR</td>
<td>Free ridership</td>
</tr>
<tr>
<td>GWh</td>
<td>Gigawatt-hour</td>
</tr>
<tr>
<td>HP</td>
<td>Horsepower</td>
</tr>
<tr>
<td>HPNC</td>
<td>High Performance New Construction Program</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating, ventilation, and air conditioning</td>
</tr>
<tr>
<td>kW</td>
<td>Kilowatt</td>
</tr>
<tr>
<td>kWh</td>
<td>Kilowatt-hour</td>
</tr>
<tr>
<td>IESCO</td>
<td>Independent Electricity System Operator</td>
</tr>
<tr>
<td>LDC</td>
<td>Local Distribution Company</td>
</tr>
<tr>
<td>LUEC</td>
<td>Levelized Unit Energy Cost</td>
</tr>
<tr>
<td>MW</td>
<td>Megawatt</td>
</tr>
<tr>
<td>MWh</td>
<td>Megawatt-hour</td>
</tr>
<tr>
<td>NTG</td>
<td>Net-to-gross</td>
</tr>
<tr>
<td>NTGR</td>
<td>Net-to-gross ratio</td>
</tr>
<tr>
<td>P4P</td>
<td>Pay for Performance</td>
</tr>
<tr>
<td>PAC</td>
<td>Program administrator cost</td>
</tr>
<tr>
<td>SBL</td>
<td>Small Business Lighting Program</td>
</tr>
<tr>
<td>SO</td>
<td>Spillover</td>
</tr>
<tr>
<td>TRC</td>
<td>Total resource cost</td>
</tr>
<tr>
<td>VFD</td>
<td>Variable frequency drive</td>
</tr>
</tbody>
</table>
1 Executive Summary

The Independent Electricity System Operator (IESO) retained Nexant, Inc., to conduct a simplified evaluation approach of its business energy conservation programs for Program Year 2018 (PY 2018) as part of an orderly and cost effective wind down of the Conservation First Framework\(^1\). The evaluation team also includes NMR Group, Inc. This section provides a high-level summary of results of the impact and process evaluation of IESO’s province-wide and local business programs for PY 2018.

1.1 Evaluation Goals and Objectives

The following are goals and objectives of the 2018 evaluation of the Business Programs:

- Determine net adjusted results based on a simplified evaluation approach of the following province-wide Save on Energy Programs: Retrofit Full Cost Recovery, Retrofit Pay for Performance, Small Business Lighting, Business Refrigeration Initiative, Audit Funding, High Performance New Construction, and Existing Building Commissioning Programs
- Determine net adjusted results based on a simplified evaluation approach of the following local and regional programs: PUMPSaver, RTUsaver, OPsaver, and High Efficiency Agricultural Pumping
- Determine the cost effectiveness of each program using the Total Resource Cost (TRC) test, Program Administrator’s Cost (PAC) test and Levelized Unit Energy Costs (LUEC).

A summary of the impact evaluation methodology is presented in Section 2 with the net adjusted results presented and discussed in Section 3.

1.2 Business Program Results

The total 2018 first-year net adjusted energy and summer peak demand savings across all business programs was 549.9 GWh and 81.8 MW, respectively. The contribution of each program to the net adjusted energy savings is presented in Table 1-1.

\(^{1}\) The Conservation First Framework (CFF) was discontinued last March 21, 2019 (http://ieso.ca/Sector-Participants/Conservation-Delivery-and-Tools/Interim-Framework).
Table 1-1: 2018 Program and Portfolio Savings

<table>
<thead>
<tr>
<th>Program Availability</th>
<th>Program</th>
<th>Net Energy Savings (GWh)</th>
<th>Net Summer Demand Savings (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Province Wide</td>
<td>Retrofit Full Cost Recovery (FCR)</td>
<td>405.6</td>
<td>54.8</td>
</tr>
<tr>
<td>Province Wide</td>
<td>Retrofit Pay-for-Performance (P4P)</td>
<td>43.6</td>
<td>7.0</td>
</tr>
<tr>
<td>Province Wide</td>
<td>Small Business Lighting</td>
<td>40.4</td>
<td>7.8</td>
</tr>
<tr>
<td>Province Wide</td>
<td>High Performance New Construction</td>
<td>20.9</td>
<td>8.1</td>
</tr>
<tr>
<td>Province Wide</td>
<td>Audit Funding</td>
<td>17.0</td>
<td>0.9</td>
</tr>
<tr>
<td>Province Wide</td>
<td>Business Refrigeration</td>
<td>12.0</td>
<td>0.9</td>
</tr>
<tr>
<td>Province Wide</td>
<td>Existing Building Commissioning</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Province Wide Program Savings</td>
<td>Province Wide Program Savings</td>
<td>539.6</td>
<td>79.7</td>
</tr>
<tr>
<td>Regional and Local</td>
<td>PUMPSaver</td>
<td>7.3</td>
<td>0.9</td>
</tr>
<tr>
<td>Regional and Local</td>
<td>RTUsaver</td>
<td>2.7</td>
<td>1.2</td>
</tr>
<tr>
<td>Regional and Local</td>
<td>Opsaver</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Regional and Local</td>
<td>High Efficiency Agricultural Pumping</td>
<td>0.03</td>
<td>0.0</td>
</tr>
<tr>
<td>Regional and Local Program Savings</td>
<td>Regional and Local Program Savings</td>
<td>10.3</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Table 1-2 summarizes the TRC and PAC cost effective results for each program where programs with a result of 1.0 or greater are considered to pass the test. Levelized Unit Energy Costs ($/kWh and $/kW) represent the cost paid by the program for each unit of energy and demand saved.
Table 1-2: 2018 Business Programs Cost Effectiveness Results

<table>
<thead>
<tr>
<th>Program Availability</th>
<th>Program</th>
<th>TRC Ratio</th>
<th>PAC Ratio</th>
<th>$/kWh</th>
<th>$/kW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Retrofitted FCR</td>
<td>1.14</td>
<td>3.38</td>
<td>$0.022</td>
<td>$166.62</td>
</tr>
<tr>
<td></td>
<td>Retricted P4P</td>
<td>1.92</td>
<td>3.27</td>
<td>$0.024</td>
<td>$144.49</td>
</tr>
<tr>
<td>Province Wide</td>
<td>Small Business Lighting</td>
<td>1.43</td>
<td>1.45</td>
<td>$0.061</td>
<td>$622.03</td>
</tr>
<tr>
<td></td>
<td>High Performance New Construction</td>
<td>0.67</td>
<td>5.27</td>
<td>$0.024</td>
<td>$160.29</td>
</tr>
<tr>
<td></td>
<td>Audit Funding</td>
<td>1.49</td>
<td>3.52</td>
<td>$0.016</td>
<td>$60.11</td>
</tr>
<tr>
<td></td>
<td>Business Refrigeration</td>
<td>1.50</td>
<td>1.32</td>
<td>$0.046</td>
<td>$293.46</td>
</tr>
<tr>
<td></td>
<td>Existing Building Commissioning</td>
<td>0.25</td>
<td>0.21</td>
<td>$0.721</td>
<td>$1,323.55</td>
</tr>
<tr>
<td>Regional and Local</td>
<td>PUMPSaver</td>
<td>4.19</td>
<td>3.65</td>
<td>$0.021</td>
<td>$83.45</td>
</tr>
<tr>
<td></td>
<td>RTUsaver</td>
<td>5.08</td>
<td>3.66</td>
<td>$0.038</td>
<td>$287.42</td>
</tr>
<tr>
<td></td>
<td>OPsaver</td>
<td>0.36</td>
<td>0.20</td>
<td>$0.237</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>High Efficiency Agricultural Pumping</td>
<td>0.03</td>
<td>0.03</td>
<td>$4.194</td>
<td>$12,570.98</td>
</tr>
</tbody>
</table>
SECTION 2 EVALUATION METHODOLOGY

2 Evaluation Methodology

2.1 Impact Evaluation Methodology

Following receipt of a directive from the Ministry of Energy, Northern Development and Mines on March 21, 2019, the IESO took necessary steps to immediately discontinue the Conservation First Framework (CFF) and used all reasonable efforts to minimize costs associated with the CFF. As part of this orderly wind-down the IESO applied a simplified PY 2018 evaluation and reporting approach.

Projects across all programs, except for Retrofit P4P\(^1\), were reviewed for energy and summer peak demand savings using the historical samples of verified projects from previous evaluation years. Savings from these previously verified projects were estimated using impact evaluation techniques including population sampling, project audits, verification of site specific energy and summer peak demand savings, comparison of verified savings to reported savings to calculate realization rates, and estimation of net-to-gross ratios through participant attribution surveys.

The realization rates and net-to-gross adjustment factors applied to PY 2018 programs were calculated using a savings-weighted average of the most relevant previous program year’s adjustment factors. Most provincial programs applied values from the PY 2015 through PY 2017 evaluations. BRI and PUMPSaver programs started in PY 2016 and took their first (PY 2016) and second year (PY 2017) results into account for the adjustment factors, and results for RTUSaver and OPsaver are based on PY 2016 which was the only year with historical evaluated results. Calculated adjustment factors for each program, and the data source for these adjustment factors, are shown in Table 2-1.

Table 2-1: 2018 Program Level Adjustment Factors

<table>
<thead>
<tr>
<th>Program Availability</th>
<th>Program</th>
<th>Realization Rate</th>
<th>Net-to-Gross</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Province Wide</td>
<td>Retrofit FCR</td>
<td>98.4%</td>
<td>93.4%</td>
<td>81.6%</td>
</tr>
<tr>
<td></td>
<td>Small Business Lighting</td>
<td>79.2%</td>
<td>62.4%</td>
<td>91.6%</td>
</tr>
<tr>
<td></td>
<td>High Performance New Construction</td>
<td>108.0%</td>
<td>104.0%</td>
<td>58.0%</td>
</tr>
<tr>
<td></td>
<td>Audit Funding</td>
<td>n/a</td>
<td>n/a</td>
<td>90.0%</td>
</tr>
<tr>
<td></td>
<td>Existing Building Commissioning</td>
<td>100.0%</td>
<td>117.0%</td>
<td>78.0%</td>
</tr>
<tr>
<td></td>
<td>Business Refrigeration</td>
<td>67.0%</td>
<td>63.0%</td>
<td>98.0%</td>
</tr>
</tbody>
</table>

\(^1\) As per the Electricity Conservation Agreement (ECA) the IESO is required to continue to fund Eligible Expenses that have been paid, are payable or have accrued under the CDM Plan to the date of termination and will fund Participant Incentives and pay pay-for-performance incentives of the Programs under existing Participant Agreements that continue in effect following termination.
2.1 Retrofit P4P Quarterly Evaluation Methodology

In contrast to the rest of the programs offered through CFF and evaluated on an annual basis, the Retrofit P4P Program evaluation reviewed projects on quarterly time-frame. LDCs who opted into this program forego set incentive levels dependent on ex-ante equipment installed or reported energy savings, and instead were provided set payments based on net verified ex-post savings. Quarterly evaluations of these projects provided a consistent accounting of program savings and expected payments to the LDCs. Realization rates were calculated for each quarter through the use of a four-quarter rolling sample based on savings verification of sample projects, with program specific quarterly NTG rates determined independently for each quarter through participant attribution surveys.\(^2\)

LDCs that opt into the Retrofit P4P Program are required to submit their projects to IESO in two different ways:

1. Quarterly: Allowing the evaluation team to verify the projects and provide net verified energy savings estimates that are used to calculate incentive payments; and
2. Annually: Through the use of the LDC Reports projects are submitted to IESO for inclusion in the annual accounting of savings that are attributable to the energy efficiency portfolio.

In 2018 the Retrofit P4P Program submitted 2,039 projects for review through the quarterly reporting process, but only 749 of these projects were provided through the LDC Reports and included in the Retrofit P4P Impact Evaluation (Section 3.2). The evaluation team expects the remaining projects will be included in the PY2019 evaluation as true-ups.

2.1.2 Gross Reported Savings

Gross reported savings are the energy and summer peak demand savings that are provided by program participants on their applications.

2.1.3 Gross Adjusted Savings

The adjustment factors in Table 2-1 include realization rates that model the historical levels of gross energy and demand savings that are achieved based on program reported energy and demand savings. For PY 2018, a weighted average of past program realization rates was applied to create adjustment factor for 2018 projects. The calculation of this weighted average realization rate for the Retrofit Program is shown in Equation 2-1.

\(^2\) If quarterly NTG results fail to meet the 90/10 target responses from the previous quarter are rolled into the current results.
Equation 2-1: Weighted Average Realization Rate Calculation

\[
2018 \text{ Energy Realization Rate}_{\text{Retrofit}} = \frac{\sum_{2015}^{2017} \text{Energy Savings}_{\text{Retrofit},i} \times \text{Energy Realization Rate}_{\text{Retrofit},i}}{\sum_{2015}^{2017} \text{Energy Savings}_{\text{Retrofit},i}}
\]

Weighted average realization rates were developed for each program based on past performance. Total program gross adjusted savings for all projects in the program are then calculated as the product of program reported savings and the program’s weighted average realization rate. Error! Reference source not found. shows the basic formula for calculating the gross adjusted savings for each program.

Equation 2-2: Gross Adjusted Savings

\[
\text{Gross Adjusted Savings}_{\text{Program}} = \text{Reported Savings}_{\text{Program}} \times \text{Realization Rate}_{\text{Program}}
\]

Where:

\[
\text{Reported Savings}_{\text{Program}} = \text{Sum of all savings reported for a given program}
\]

\[
\text{Realization Rate}_{\text{Program}} = \text{Adjustment factor based on past program performance}
\]

These total program-level gross adjusted savings reflect the direct energy and demand impact of the program’s operations. However, these program-level gross savings do not account for customer or market behaviour impact that may have been added to or subtracted from the program’s direct results—these market effects are accounted for through the net impact analysis.

2.1.4 Lifetime Savings

The total amount of savings that occur over the lifetime of the retrofitted equipment is an important consideration in the impact evaluation since energy savings, demand savings, avoided energy costs, avoided capacity costs, and other benefits continue to accrue each year the equipment is in service. The evaluation team created savings persistence load profiles for each program that model performance of past programs over time to create annual persistence factors between 0% and 100%. This value represents the portion of first-year savings that remain in place for each year between 2018 and 2050 and the product of the first-year savings and persistence factor is the annual savings for a given year (Equation 2-3). Lifetime savings are calculated as the sum of all program savings between 2018 and 2050 (Equation 2-4).

Equation 2-3: Annual Savings

\[
\text{Annual Savings}_{\text{Program},i} = \text{Evaluated Savings}_{\text{Program}} \times \text{Per sistance Factor}_{\text{Program},i}
\]

Equation 2-4: Lifetime Savings

\[
\text{Lifetime Savings}_{\text{Program}} = \sum_{i=2018}^{2050} \text{Annual Savings}_{\text{Program},i}
\]

Where:

\[
\text{Annual Savings} = \text{Program level savings for a given year}
\]
2.1.5 Net Adjusted Savings

Net adjusted savings represent the portion of gross adjusted savings that are attributable to each program. This accounts for the influence of free-riders, program participants who would have implemented a program measure or practice in the absence of the program, and spillover, additional reductions in energy consumption and demand that are due to program influences beyond those directly associated with program participation. Using a process similar to the estimation of energy and demand realization rates, adjustment factors for program level net-to-gross were based on a weighted average of past program performance (Equation 2-5).

Equation 2-5: Weighted Average Net-to-Gross Calculation

\[
2018 \text{ Energy Net} \to \text{ Gross}_{\text{Retrofit}} = \frac{\sum_{2017}^{2015} \text{ Energy Savings}_{\text{Retrofit},i} \times \text{ Energy Net} \to \text{ Gross Ratio}_{\text{Retrofit},i}}{\sum_{2017}^{2015} \text{ Energy Savings}_{\text{Retrofit},i}}
\]

Net adjusted savings were determined by multiplying the gross adjusted savings by the net-to-gross (NTG) ratio as shown in and Equation 2-6.

Equation 2-6: Net Adjusted Savings

\[
\text{Net Savings}_{\text{Program}} = \text{Gross Adjusted Savings}_{\text{Program}} \times \text{NTG}_{\text{Program}}
\]

Where:

- Gross Adjusted Savings\(_{\text{Program}}\) = Gross adjusted savings for a given program
- NTG\(_{\text{Program}}\) = Net-to-gross ratio for a given program

2.2 Cost Effectiveness

The IESO CDM Energy Efficiency Cost Effectiveness Tool was used to calculate various measures of cost effectiveness, including the Total Resource Cost (TRC) Test, the Program Administrator Cost (PAC) Test, and the Levelized Unit Energy Cost (LUEC). Tool inputs included program level benefits and costs stated in present value terms with appropriate discount and inflation rates applied to estimate the future values. Program useful life was estimated using past program performance. The IESO CDM Energy Efficiency Cost Effectiveness Tool conforms to IESO requirements set forth in the IESO CDM Cost-Effectiveness Test Guide.
3 Impact Results

3.1 Retrofit Full Cost Recovery

The Retrofit Program provides incentives to businesses in the industrial, commercial, institutional and multi-family residential sectors for the purchase and operation of energy efficient equipment. Incentives are based on a per unit basis for the prescriptive track and on a per-kWh or per-kW basis for custom track measures. LDCs are provided the option of two payment methods to recoup costs associated with the program; Full Cost Recovery (FCR) or Pay for Performance (P4P). Nearly all LDCs choose the Retrofit FCR Program and receive set incentive levels based on the type of equipment installed (prescriptive track) during a project or the reported energy savings (custom track) estimated on the project application.

3.1.1 Retrofit Impact Results

Table 3-1 shows the province-wide results of the 2018 Retrofit Full Cost Recovery (FCR) Program impact evaluation.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Project Count</th>
<th>Reported Savings</th>
<th>Realization Rate</th>
<th>Gross Adjusted Savings</th>
<th>Net-to-Gross Ratio</th>
<th>Net Savings</th>
<th>Lifetime Net Savings</th>
<th>Net Savings at 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (GWh)</td>
<td>8,102</td>
<td>505.2</td>
<td>98.4%</td>
<td>497.1</td>
<td>81.6%</td>
<td>405.6</td>
<td>4,896.2</td>
<td>404.1</td>
</tr>
<tr>
<td>Summer Peak Demand (MW)</td>
<td>69.9</td>
<td>93.4%</td>
<td>65.3</td>
<td>84.0%</td>
<td>54.8</td>
<td>671.4</td>
<td>55.0</td>
<td></td>
</tr>
</tbody>
</table>

3.1.2 Retrofit Cost Effectiveness

Cost effectiveness (CE) for the 2018 Retrofit FCR Program achieved a TRC ratio of 1.10 and PAC ratio of 3.10 (Table 3-2). Each of these tests exceeded the set threshold of 1.00 to determine if a program is cost effective.
3.2 Retrofit Pay for Performance

The Retrofit P4P Program, offered by Alectra Utilities, provided incentives for equipment installed at industrial, commercial, institutional, and residential multi-family sectors. Under the P4P payment mechanism the utility is reimbursed based on the net-verified energy savings evaluated quarterly instead of a set payment dependent on equipment installed or savings reported.

3.2.1 Retrofit Pay for Performance Impact Results

Table 3-3 shows the results of the 2018 Retrofit P4P Program impact evaluation. Interactive effects were added to the program realization rates to account for the influence of lighting savings on heating and cooling loads at the project site.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Project Count</th>
<th>Reported Savings</th>
<th>Realization Rate</th>
<th>Gross Adjusted Savings</th>
<th>Net-to-Gross Ratio</th>
<th>Net Savings</th>
<th>Lifetime Net Savings</th>
<th>Net Savings at 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (GWh)</td>
<td>749</td>
<td>52.9</td>
<td>108.6%</td>
<td>57.4</td>
<td>75.9%</td>
<td>43.6</td>
<td>555.8</td>
<td>43.6</td>
</tr>
<tr>
<td>Summer Peak Demand (MW)</td>
<td>8.6</td>
<td>107.2%</td>
<td>9.2</td>
<td>76.2%</td>
<td>7.0</td>
<td>91.6</td>
<td>7.0</td>
<td></td>
</tr>
</tbody>
</table>
3.2.2 Retrofit Pay for Performance Cost Effectiveness
Cost effectiveness for the 2018 Retrofit P4P Program achieved a TRC ratio of 1.92 and PAC ratio of 3.27 (Table 3-4). Each of these tests exceeded the set threshold of 1.00 to determine if a program is cost effective.

<table>
<thead>
<tr>
<th>Cost Effectiveness Test</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Resource Cost (TRC)</td>
<td></td>
</tr>
<tr>
<td>TRC Costs ($)</td>
<td>$35,920,160</td>
</tr>
<tr>
<td>TRC Benefits ($)</td>
<td>$18,725,361</td>
</tr>
<tr>
<td>TRC Net Benefits ($)</td>
<td>$17,194,799</td>
</tr>
<tr>
<td>TRC Net Benefit (Ratio)</td>
<td>1.92</td>
</tr>
<tr>
<td>Program Administrator Cost (PAC)</td>
<td></td>
</tr>
<tr>
<td>PAC Costs ($)</td>
<td>$33,554,652</td>
</tr>
<tr>
<td>PAC Benefits ($)</td>
<td>$10,269,423</td>
</tr>
<tr>
<td>PAC Net Benefits ($)</td>
<td>$23,285,229</td>
</tr>
<tr>
<td>PAC Net Benefit (Ratio)</td>
<td>3.27</td>
</tr>
<tr>
<td>Levelized Unit Energy Cost (LUEC)</td>
<td></td>
</tr>
<tr>
<td>$/kWh</td>
<td>$0.024</td>
</tr>
<tr>
<td>$/kW</td>
<td>$144.49</td>
</tr>
</tbody>
</table>

3.3 Small Business Lighting
The Small Business Lighting (SBL) Program provides small business owners and tenants of commercial, institutional, agricultural facilities, and multifamily buildings who are not residential distribution customers the opportunity to receive up to $2,000 in free lighting upgrades.

3.3.1 Small Business Lighting Impact Results
Table 3-5 shows the province-wide results of the 2018 SBL Program impact evaluation.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Project Count</th>
<th>Reported Savings</th>
<th>Realization Rate</th>
<th>Gross Adjusted Savings</th>
<th>Net-to-Gross Ratio</th>
<th>Net Savings</th>
<th>Lifetime Net Savings</th>
<th>Net Savings at 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (GWh)</td>
<td>7,233</td>
<td>55.7</td>
<td>79.2%</td>
<td>44.1</td>
<td>91.6%</td>
<td>40.4</td>
<td>304.9</td>
<td>32.9</td>
</tr>
<tr>
<td>Summer Peak Demand (MW)</td>
<td>13.8</td>
<td>62.4%</td>
<td>8.6</td>
<td>90.2%</td>
<td>7.8</td>
<td>63.4</td>
<td>6.3</td>
<td></td>
</tr>
</tbody>
</table>
3.3.2 Small Business Lighting Cost Effectiveness

Cost effectiveness (CE) for the 2018 SBL Program achieved a TRC ratio of 1.29 and PAC ratio of 1.30 (Table 3-6). Each of these tests exceeded the set threshold of 1.00 to determine if a program is cost effective.

<table>
<thead>
<tr>
<th>Cost Effectiveness Test</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Resource Cost (TRC)</td>
<td></td>
</tr>
<tr>
<td>TRC Costs ($)</td>
<td>$20,026,402</td>
</tr>
<tr>
<td>TRC Benefits ($)</td>
<td>$14,001,621</td>
</tr>
<tr>
<td>TRC Net Benefits ($)</td>
<td>$6,024,781</td>
</tr>
<tr>
<td>TRC Net Benefit (Ratio)</td>
<td>1.43</td>
</tr>
<tr>
<td>Program Administrator Cost (PAC)</td>
<td></td>
</tr>
<tr>
<td>PAC Costs ($)</td>
<td>$19,812,150</td>
</tr>
<tr>
<td>PAC Benefits ($)</td>
<td>$13,640,191</td>
</tr>
<tr>
<td>PAC Net Benefits ($)</td>
<td>$6,171,959</td>
</tr>
<tr>
<td>PAC Net Benefit (Ratio)</td>
<td>1.45</td>
</tr>
<tr>
<td>Levelized Unit Energy Cost (LUEC)</td>
<td></td>
</tr>
<tr>
<td>$/kWh</td>
<td>$0.061</td>
</tr>
<tr>
<td>$/kW</td>
<td>$622.03</td>
</tr>
</tbody>
</table>

3.4 High Performance New Construction

The High Performance New Construction (HPNC) Program provides design assistance and incentives for building owners and planners who design and implement energy efficient equipment within commercial, institutional, industrial, or multi-residential occupancy new construction or major renovation projects. Incentives are offered for measures or designs that exceed the current Ontario Building Code requirements.

3.4.1 HPNC Impact Results

Table 3-7 shows the province-wide results of the 2018 HPNC Program impact evaluation.
Table 3-7: 2018 HPNC Program Impact Results

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Project Count</th>
<th>Reported Savings</th>
<th>Realization Rate</th>
<th>Gross Adjusted Savings</th>
<th>Net-to-Gross Ratio</th>
<th>Net Savings</th>
<th>Lifetime Net Savings</th>
<th>Net Savings at 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (GWh)</td>
<td>124</td>
<td>33.3</td>
<td>108.0%</td>
<td>36.0</td>
<td>58.0%</td>
<td>20.9</td>
<td>438.3</td>
<td>20.9</td>
</tr>
<tr>
<td>Summer Peak Demand (MW)</td>
<td></td>
<td>7.2</td>
<td>104.0%</td>
<td>7.5</td>
<td>108.0%</td>
<td>8.1</td>
<td>174.7</td>
<td>8.1</td>
</tr>
</tbody>
</table>

3.4.2 HPNC Cost Effectiveness
Cost effectiveness (CE) for the 2018 HPNC Program achieved a TRC ratio of 0.66 and a PAC ratio of 4.88 (Table 3-8). The PAC result exceeds the set threshold of 1.00 to determine if a program is cost effective.

Table 3-8: 2018 HPNC Program Cost Effectiveness Results

<table>
<thead>
<tr>
<th>Cost Effectiveness Test</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Resource Cost (TRC)</td>
<td></td>
</tr>
<tr>
<td>TRC Costs ($)</td>
<td>$41,258,675</td>
</tr>
<tr>
<td>TRC Benefits ($)</td>
<td>$61,547,864</td>
</tr>
<tr>
<td>TRC Net Benefits ($)</td>
<td>($20,289,189)</td>
</tr>
<tr>
<td>TRC Net Benefit (Ratio)</td>
<td>0.67</td>
</tr>
<tr>
<td>Program Administrator Cost (PAC)</td>
<td></td>
</tr>
<tr>
<td>PAC Costs ($)</td>
<td>$35,877,108</td>
</tr>
<tr>
<td>PAC Benefits ($)</td>
<td>$6,807,166</td>
</tr>
<tr>
<td>PAC Net Benefits ($)</td>
<td>$29,069,943</td>
</tr>
<tr>
<td>PAC Net Benefit (Ratio)</td>
<td>5.27</td>
</tr>
<tr>
<td>Levelized Unit Energy Cost (LUEC)</td>
<td></td>
</tr>
<tr>
<td>$/kWh</td>
<td>$0.024</td>
</tr>
<tr>
<td>$/kW</td>
<td>$160.29</td>
</tr>
</tbody>
</table>

3.5 Business Refrigeration
The Business Refrigeration Incentive (BRI) Program provides small business owners and tenants of commercial, institutional, agricultural facilities, and multifamily buildings who are not residential distribution customers the opportunity to receive up to $2,500 in free refrigeration equipment upgrades.

3.5.1 Business Refrigeration Impact Results
Table 3-9 shows the province-wide results of the 2018 BRI impact evaluation.
3.5.2 Business Refrigeration Cost Effectiveness
Cost effectiveness (CE) for the 2018 BRI achieved a TRC ratio of 1.36 and PAC ratio of 1.19 (Table 3-10). Each of these tests exceeded the set threshold of 1.00 to determine if a program is cost effective.

Table 3-10: 2018 BRI Program Cost Effectiveness Results

<table>
<thead>
<tr>
<th>Cost Effectiveness Test</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Resource Cost (TRC)</td>
<td></td>
</tr>
<tr>
<td>TRC Costs ($)</td>
<td>$8,347,413</td>
</tr>
<tr>
<td>TRC Benefits ($)</td>
<td>$5,561,372</td>
</tr>
<tr>
<td>TRC Net Benefits ($)</td>
<td>$2,786,042</td>
</tr>
<tr>
<td>TRC Net Benefit (Ratio)</td>
<td>1.50</td>
</tr>
<tr>
<td>Program Administrator Cost (PAC)</td>
<td></td>
</tr>
<tr>
<td>PAC Costs ($)</td>
<td>$7,258,620</td>
</tr>
<tr>
<td>PAC Benefits ($)</td>
<td>$5,509,178</td>
</tr>
<tr>
<td>PAC Net Benefits ($)</td>
<td>$1,749,443</td>
</tr>
<tr>
<td>PAC Net Benefit (Ratio)</td>
<td>1.32</td>
</tr>
<tr>
<td>Levelized Unit Energy Cost (LUEC)</td>
<td></td>
</tr>
<tr>
<td>$/kWh</td>
<td>$0.046</td>
</tr>
<tr>
<td>$/kW</td>
<td>$293.46</td>
</tr>
</tbody>
</table>

3.6 Audit Funding
The Audit Funding Program provides funding of up to half of the cost of certain energy audits that are undertaken to identify opportunities to reduce electricity consumption at industrial, commercial, institutional, and multi-family residential buildings; this program also acts as a feeder for the Retrofit Program.

3.6.1 Audit Funding Impact Results
Table 3-11 shows the province-wide results of the 2018 Audit Funding Program impact evaluation.
Table 3-11: 2018 Audit Funding Program Impact Results

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Project Count</th>
<th>Reported Savings</th>
<th>Realization Rate</th>
<th>Gross Adjusted Savings</th>
<th>Net-to-Gross Ratio</th>
<th>Net Savings</th>
<th>Lifetime Net Savings</th>
<th>Net Savings at 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (GWh)</td>
<td>374</td>
<td>18.9</td>
<td>100.0%</td>
<td>18.9</td>
<td>90.0%</td>
<td>17.0</td>
<td>168.0</td>
<td>17.0</td>
</tr>
<tr>
<td>Summer Peak Demand (MW)</td>
<td></td>
<td>1.1</td>
<td>100.0%</td>
<td>1.1</td>
<td>87.0%</td>
<td>0.9</td>
<td>9.4</td>
<td>0.9</td>
</tr>
</tbody>
</table>

3.6.2 Audit Funding Cost Effectiveness

Cost effectiveness (CE) for the 2018 Audit Funding Program achieved a TRC ratio of 1.36 and PAC ratio of 1.19 (Table 3-2). Each of these tests exceeded the set threshold of 1.00 to determine if a program is cost effective.

Table 3-12: 2018 Audit Funding Program Cost Effectiveness Results

<table>
<thead>
<tr>
<th>Cost Effectiveness Test</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Resource Cost (TRC)</td>
<td></td>
</tr>
<tr>
<td>TRC Costs ($)</td>
<td>$9,126,784</td>
</tr>
<tr>
<td>TRC Benefits ($)</td>
<td>$6,110,572</td>
</tr>
<tr>
<td>TRC Net Benefits ($)</td>
<td>$3,016,212</td>
</tr>
<tr>
<td>TRC Net Benefit (Ratio)</td>
<td>1.49</td>
</tr>
<tr>
<td>Program Administrator Cost (PAC)</td>
<td></td>
</tr>
<tr>
<td>PAC Costs ($)</td>
<td>$7,936,334</td>
</tr>
<tr>
<td>PAC Benefits ($)</td>
<td>$2,255,828</td>
</tr>
<tr>
<td>PAC Net Benefits ($)</td>
<td>$5,680,506</td>
</tr>
<tr>
<td>PAC Net Benefit (Ratio)</td>
<td>3.52</td>
</tr>
<tr>
<td>Levelized Unit Energy Cost (LUEC)</td>
<td></td>
</tr>
<tr>
<td>$/kWh</td>
<td>$0.016</td>
</tr>
<tr>
<td>$/kW</td>
<td>$60.11</td>
</tr>
</tbody>
</table>

3.7 Existing Building Commissioning

The Existing Building Commissioning (EBCx) Program provides funding for projects comprised of commissioning phases and the installation of measures to reduce electricity consumption associated with chilled water systems in existing industrial, commercial, institutional, and multifamily residential buildings.

3.7.1 Existing Building Commissioning Impact Results

Table 3-13 shows the province-wide results of the 2018 EBCx impact evaluation.
3.7.2 Existing Building Commissioning Cost Effectiveness

Cost effectiveness (CE) for the 2018 EBCx achieved a TRC ratio of 0.20 and PAC ratio of 0.17 which reflect negative TRC and PAC net benefit for this program (Table 3-14). Neither the TRC nor PAC test exceeded the set threshold of 1.00 to determine if a program is cost effective.

Table 3-14: 2018 EBCx Program Cost Effectiveness Results

<table>
<thead>
<tr>
<th>Cost Effectiveness Test</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Resource Cost (TRC)</td>
<td></td>
</tr>
<tr>
<td>TRC Costs ($)</td>
<td>$55,895</td>
</tr>
<tr>
<td>TRC Benefits ($)</td>
<td>$221,981</td>
</tr>
<tr>
<td>TRC Net Benefits ($)</td>
<td>($166,086)</td>
</tr>
<tr>
<td>TRC Net Benefit (Ratio)</td>
<td>0.25</td>
</tr>
<tr>
<td>Program Administrator Cost (PAC)</td>
<td></td>
</tr>
<tr>
<td>PAC Costs ($)</td>
<td>$48,604</td>
</tr>
<tr>
<td>PAC Benefits ($)</td>
<td>$236,768</td>
</tr>
<tr>
<td>PAC Net Benefits ($)</td>
<td>($188,164)</td>
</tr>
<tr>
<td>PAC Net Benefit (Ratio)</td>
<td>0.21</td>
</tr>
<tr>
<td>Levelized Unit Energy Cost (LUEC)</td>
<td></td>
</tr>
<tr>
<td>$/kWh</td>
<td>$0.721</td>
</tr>
<tr>
<td>$/kW</td>
<td>$1,323.55</td>
</tr>
</tbody>
</table>

3.8 PUMPSaver

The PUMPSaver local program delivered by Toronto Hydro Electric System Ltd (THESL) was created to save electricity consumption through improving the efficiency of cooling and heating distribution systems. Specifically, the program’s objective is to re-engineer and re-balance inefficient closed loop heating and cooling distribution systems, typically found in mid to high-rise buildings, with the application of variable frequency drives (VFDs). Typically, valves are used to restrict the flow of liquid which creates back-pressure on the motor and increases energy consumption. With a variable frequency drive valves can be
opened and systems can be configured to move liquid at the desired rate of flow, reducing work required of the motor.

3.8.1 PUMPSaver Impact Results

Table 3-15 shows the results of the 2018 PUMPSaver Program impact evaluation.

Table 3-15: 2018 PUMPSaver Program Impact Results

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Project Count</th>
<th>Reported Savings</th>
<th>Realization Rate</th>
<th>Gross Adjusted Savings</th>
<th>Net-to-Gross Ratio</th>
<th>Net Savings</th>
<th>Lifetime Net Savings</th>
<th>Net Savings at 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (GWh)</td>
<td>12</td>
<td>6.3</td>
<td>114.0%</td>
<td>7.2</td>
<td>101.0%</td>
<td>7.3</td>
<td>109.6</td>
<td>7.3</td>
</tr>
<tr>
<td>Summer Peak Demand (MW)</td>
<td></td>
<td>0.8</td>
<td>102.0%</td>
<td>0.8</td>
<td>114.0%</td>
<td>0.9</td>
<td>13.6</td>
<td>0.9</td>
</tr>
</tbody>
</table>

3.8.2 PUMPSaver Cost Effectiveness

Cost effectiveness (CE) for the 2018 PUMPSaver Program achieved a TRC ratio of 4.01 and PAC ratio of 3.50 (Table 3-16). Each of these tests exceeded the set threshold of 1.00 to determine if a program is cost effective.

Table 3-16: 2018 PUMPSaver Program Cost Effectiveness Results

<table>
<thead>
<tr>
<th>Cost Effectiveness Test</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Resource Cost (TRC)</td>
<td></td>
</tr>
<tr>
<td>TRC Costs ($)</td>
<td>$6,316,015</td>
</tr>
<tr>
<td>TRC Benefits ($)</td>
<td>$1,508,625</td>
</tr>
<tr>
<td>TRC Net Benefits ($)</td>
<td>$4,807,391</td>
</tr>
<tr>
<td>TRC Net Benefit (Ratio)</td>
<td>4.19</td>
</tr>
<tr>
<td>Program Administrator Cost (PAC)</td>
<td></td>
</tr>
<tr>
<td>PAC Costs ($)</td>
<td>$5,492,187</td>
</tr>
<tr>
<td>PAC Benefits ($)</td>
<td>$1,503,133</td>
</tr>
<tr>
<td>PAC Net Benefits ($)</td>
<td>$3,989,054</td>
</tr>
<tr>
<td>PAC Net Benefit (Ratio)</td>
<td>3.65</td>
</tr>
<tr>
<td>Levelized Unit Energy Cost (LUEC)</td>
<td></td>
</tr>
<tr>
<td>$/kWh</td>
<td>$0.021</td>
</tr>
<tr>
<td>$/kW</td>
<td>$83.45</td>
</tr>
</tbody>
</table>
3.9 RTUsaver
The RTUsaver local program delivered by Toronto Hydro helps non-residential customers to reduce the use of their packaged HVAC units through providing or incentivizing smart thermostats, occupancy sensor controls, and demand controlled ventilation (CO₂ sensors and fan controller).

The program includes an initial assessment of the HVAC equipment and provides the customer with a choice of controls. This initial assessment is also used to identify any repairs needed, which must be completed by the customer prior to receiving the offered measures.

3.9.1 RTUsaver Impact Results
Table 3-17 shows the results of the 2018 RTUsaver Program impact evaluation.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Project Count</th>
<th>Reported Savings</th>
<th>Realization Rate</th>
<th>Gross Adjusted Savings</th>
<th>Net-to-Gross Ratio</th>
<th>Net Savings</th>
<th>Lifetime Net Savings</th>
<th>Net Savings at 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (GWh)</td>
<td>432</td>
<td>3.7</td>
<td>103.0%</td>
<td>3.8</td>
<td>71.0%</td>
<td>2.7</td>
<td>27.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Summer Peak Demand (MW)</td>
<td></td>
<td>0.8</td>
<td>148.0%</td>
<td>1.2</td>
<td>103.0%</td>
<td>1.2</td>
<td>12.3</td>
<td>1.2</td>
</tr>
</tbody>
</table>

3.9.2 RTUsaver Cost Effectiveness
Cost effectiveness (CE) for the 2018 RTUsaver Program achieved a TRC ratio of 4.59 and PAC ratio of 3.36 (Table 3-18). Each of these tests exceeded the set threshold of 1.00 to determine if a program is cost effective.

<table>
<thead>
<tr>
<th>Cost Effectiveness Test</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Resource Cost (TRC)</td>
<td></td>
</tr>
<tr>
<td>TRC Costs ($)</td>
<td>$3,254,911</td>
</tr>
<tr>
<td>TRC Benefits ($)</td>
<td>$641,282</td>
</tr>
<tr>
<td>TRC Net Benefits ($)</td>
<td>$2,613,628</td>
</tr>
<tr>
<td>TRC Net Benefit (Ratio)</td>
<td>5.08</td>
</tr>
<tr>
<td>Program Administrator Cost (PAC)</td>
<td></td>
</tr>
<tr>
<td>PAC Costs ($)</td>
<td>$2,830,357</td>
</tr>
<tr>
<td>PAC Benefits ($)</td>
<td>$773,270</td>
</tr>
<tr>
<td>PAC Net Benefits ($)</td>
<td>$2,057,087</td>
</tr>
<tr>
<td>PAC Net Benefit (Ratio)</td>
<td>3.66</td>
</tr>
</tbody>
</table>
3.10 OPsaver

OPsaver is a ‘Continuous Energy Improvement’ (CEI) program that provided Toronto Hydro’s medium to large sized commercial, institutional, and industrial customers with the opportunity to work with energy experts who guide them towards continuous building operations improvements. OPsaver motivates organizations to achieve and maintain operational maintenance and behaviour energy savings.

Through year-over-year engagement, the program provides ‘coaching’ for building operators and employees to encourage energy conservation activities with the intention that these practices persist over time. Participants work with the OPsaver Consultants to identify, implement and evaluate operational and behavioural energy efficiency measures and establish continuous energy improvement processes to ensure the energy savings are realized over the long-term.

3.10.1 OPsaver Impact Results

Table 3-19 shows the results of the 2018 OPsaver Program impact evaluation.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Project Count</th>
<th>Reported Savings</th>
<th>Realization Rate</th>
<th>Gross Adjusted Savings</th>
<th>Net-to-Gross Ratio</th>
<th>Net Savings</th>
<th>Lifetime Net Savings</th>
<th>Net Savings at 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (MWh)</td>
<td>1</td>
<td>239.8</td>
<td>104.0%</td>
<td>249.3</td>
<td>100.0%</td>
<td>249.3</td>
<td>2,721.8</td>
<td>249.3</td>
</tr>
<tr>
<td>Summer Peak Demand (kW)</td>
<td>0.0</td>
<td>100%</td>
<td>0.0</td>
<td>100%</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

3.10.2 OPsaver Program Cost Effectiveness

Cost effectiveness (CE) for the 2018 OPsaver Program achieved a TRC ratio of 0.31 and PAC ratio of 0.18 (Table 3-20). Neither the TRC nor PAC test exceeded the set threshold of 1.00 to determine if a program is cost effective.

<table>
<thead>
<tr>
<th>Cost Effectiveness Test</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Resource Cost (TRC)</td>
<td></td>
</tr>
<tr>
<td>TRC Costs ($)</td>
<td>$117,499</td>
</tr>
<tr>
<td>TRC Benefits ($)</td>
<td>$324,656</td>
</tr>
<tr>
<td>TRC Net Benefits ($)</td>
<td>($207,157)</td>
</tr>
</tbody>
</table>
3.11 High Efficiency Agricultural Pumping Program

The High Efficiency Agricultural Pumping (HEAP) program is a regional program covering the service territories of Hydro One Network Inc. (HONI) and Niagara Peninsula Energy Inc. (NPEI). The program involves the delivery of incentives for high efficiency pump measures sold by pump distributors or wholesalers; and education targeting contractors and end users through the same pump system distributors. HEAP included only Integrated High Performance Pumping Systems (IHPPS or “smart pumps”) between 0.5 horsepower (hp) and 10 hp.

3.11.1 High Efficiency Agricultural Pumping Impact Results

Table 3-21 shows the results of the 2018 HEAP Program impact evaluation.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Project Count</th>
<th>Reported Savings</th>
<th>Realization Rate</th>
<th>Gross Adjusted Savings</th>
<th>Net-to-Gross Ratio</th>
<th>Net Savings</th>
<th>Lifetime Net Savings</th>
<th>Net Savings at 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (MWh)</td>
<td>12</td>
<td>27.2</td>
<td>100.0%</td>
<td>27.2</td>
<td>100.0%</td>
<td>27.2</td>
<td>408.3</td>
<td>27.2</td>
</tr>
<tr>
<td>Summer Peak Demand (kW)</td>
<td>9.1</td>
<td>100.0%</td>
<td>9.1</td>
<td>100.0%</td>
<td>9.1</td>
<td>136.2</td>
<td>9.1</td>
<td></td>
</tr>
</tbody>
</table>

3.11.2 High Efficiency Agricultural Pumping Cost Effectiveness

Cost effectiveness (CE) for the 2018 HEAP Program achieved a TRC ratio of 0.03 and PAC ratio of 0.02 (Table 3-22). Neither the TRC nor PAC test exceeded the set threshold of 1.00 to determine if a program is cost effective.

<table>
<thead>
<tr>
<th>Cost Effectiveness Test</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Resource Cost (TRC)</td>
<td></td>
</tr>
</tbody>
</table>
Evaluation of 2018 Business Programs

Cost Effectiveness Test

<table>
<thead>
<tr>
<th>Cost Effectiveness Test</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRC Costs ($)</td>
<td>$36,490</td>
</tr>
<tr>
<td>TRC Benefits ($)</td>
<td>$1,195,673</td>
</tr>
<tr>
<td>TRC Net Benefits ($)</td>
<td>($1,159,182)</td>
</tr>
<tr>
<td>TRC Net Benefit (Ratio)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Program Administrator Cost (PAC)

<table>
<thead>
<tr>
<th>Program Administrator Cost (PAC)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAC Costs ($)</td>
<td>$31,731</td>
</tr>
<tr>
<td>PAC Benefits ($)</td>
<td>$1,136,400</td>
</tr>
<tr>
<td>PAC Net Benefits ($)</td>
<td>($1,104,669)</td>
</tr>
<tr>
<td>PAC Net Benefit (Ratio)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Levelized Unit Energy Cost (LUEC)

<table>
<thead>
<tr>
<th>Levelized Unit Energy Cost (LUEC)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$/kWh</td>
<td>$4.194</td>
</tr>
<tr>
<td>$/kW</td>
<td>$12,570.98</td>
</tr>
</tbody>
</table>
Appendix A Business Program Impact Results

Table 3-23: Business Program Energy Savings

<table>
<thead>
<tr>
<th>Program</th>
<th>Project Count</th>
<th>Reported Energy Savings (GWh)</th>
<th>Realization Rate</th>
<th>Gross Adjusted Energy Savings (GWh)</th>
<th>Net-to-Gross Ratio</th>
<th>Net Energy Savings (GWh)</th>
<th>Lifetime Net Energy Savings (GWh)</th>
<th>Net Energy Savings at 2020 (GWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrofit FCR</td>
<td>8,102</td>
<td>505.2</td>
<td>98.4%</td>
<td>497.1</td>
<td>81.6%</td>
<td>405.6</td>
<td>4,896.2</td>
<td>404.1</td>
</tr>
<tr>
<td>Retrofit P4P</td>
<td>749</td>
<td>52.9</td>
<td>108.6%</td>
<td>57.4</td>
<td>75.9%</td>
<td>43.6</td>
<td>555.8</td>
<td>43.6</td>
</tr>
<tr>
<td>Small Business Lighting</td>
<td>7,233</td>
<td>55.7</td>
<td>79.2%</td>
<td>44.1</td>
<td>91.6%</td>
<td>40.4</td>
<td>304.9</td>
<td>32.9</td>
</tr>
<tr>
<td>High Performance New Construction</td>
<td>124</td>
<td>33.3</td>
<td>108.0%</td>
<td>36.0</td>
<td>58.0%</td>
<td>20.9</td>
<td>438.3</td>
<td>20.9</td>
</tr>
<tr>
<td>Audit Funding</td>
<td>374</td>
<td>18.9</td>
<td>100.0%</td>
<td>18.9</td>
<td>90.0%</td>
<td>17.0</td>
<td>168.0</td>
<td>17.0</td>
</tr>
<tr>
<td>Business Refrigeration</td>
<td>2,980</td>
<td>18.3</td>
<td>67.0%</td>
<td>12.3</td>
<td>98.0%</td>
<td>12.0</td>
<td>147.5</td>
<td>12.0</td>
</tr>
<tr>
<td>PUMPSaver</td>
<td>12</td>
<td>6.3</td>
<td>114.0%</td>
<td>7.2</td>
<td>101.0%</td>
<td>7.3</td>
<td>109.6</td>
<td>7.3</td>
</tr>
<tr>
<td>RTUsaver</td>
<td>432</td>
<td>3.7</td>
<td>103.0%</td>
<td>3.8</td>
<td>71.0%</td>
<td>2.7</td>
<td>27.2</td>
<td>2.7</td>
</tr>
<tr>
<td>OPsaver</td>
<td>1</td>
<td>0.2</td>
<td>104.0%</td>
<td>0.2</td>
<td>100.0%</td>
<td>0.2</td>
<td>2.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Existing Building Commissioning</td>
<td>1</td>
<td>0.1</td>
<td>100.0%</td>
<td>0.1</td>
<td>78.0%</td>
<td>0.1</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>High Efficiency Agricultural Pumping</td>
<td>12</td>
<td>0.03</td>
<td>100.0%</td>
<td>0.03</td>
<td>100.0%</td>
<td>0.03</td>
<td>0.4</td>
<td>0.03</td>
</tr>
</tbody>
</table>

¹Table values may not sum to Full Portfolio values due to rounding errors
Table 3-24: Business Program Summer Peak Demand Savings

<table>
<thead>
<tr>
<th>Program</th>
<th>Reported Demand Savings (MW)</th>
<th>Realization Rate</th>
<th>Gross Adjusted Demand Savings (MW)</th>
<th>Net-to-Gross Ratio</th>
<th>Net Demand Savings (MW)</th>
<th>Lifetime Net Demand Savings (MW)</th>
<th>Net Energy Demand at 2020 (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrofit FCR</td>
<td>69.9</td>
<td>93.4%</td>
<td>65.3</td>
<td>84.0%</td>
<td>54.8</td>
<td>671.4</td>
<td>55.0</td>
</tr>
<tr>
<td>Retrofit P4P</td>
<td>8.6</td>
<td>107.2%</td>
<td>9.2</td>
<td>76.2%</td>
<td>7.0</td>
<td>91.6</td>
<td>7.0</td>
</tr>
<tr>
<td>Small Business Lighting</td>
<td>13.8</td>
<td>62.4%</td>
<td>8.6</td>
<td>90.2%</td>
<td>7.8</td>
<td>63.4</td>
<td>6.3</td>
</tr>
<tr>
<td>High Performance New Construction</td>
<td>7.2</td>
<td>104.0%</td>
<td>7.5</td>
<td>108.0%</td>
<td>8.1</td>
<td>174.7</td>
<td>8.1</td>
</tr>
<tr>
<td>Audit Funding</td>
<td>1.1</td>
<td>100.0%</td>
<td>1.1</td>
<td>87.0%</td>
<td>0.9</td>
<td>9.4</td>
<td>0.9</td>
</tr>
<tr>
<td>Business Refrigeration</td>
<td>2.2</td>
<td>63.0%</td>
<td>1.4</td>
<td>67.0%</td>
<td>0.9</td>
<td>10.9</td>
<td>0.9</td>
</tr>
<tr>
<td>PUMPSaver</td>
<td>0.8</td>
<td>102.0%</td>
<td>0.8</td>
<td>114.0%</td>
<td>0.9</td>
<td>13.6</td>
<td>0.9</td>
</tr>
<tr>
<td>RTUsaver</td>
<td>0.8</td>
<td>148.0%</td>
<td>1.2</td>
<td>103.0%</td>
<td>1.2</td>
<td>12.3</td>
<td>1.2</td>
</tr>
<tr>
<td>OPsaver</td>
<td>0.0</td>
<td>0.0%</td>
<td>0.0</td>
<td>0.0%</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Existing Building Commissioning</td>
<td>0.04</td>
<td>117.0%</td>
<td>0.04</td>
<td>100.0%</td>
<td>0.04</td>
<td>0.21</td>
<td>0.04</td>
</tr>
<tr>
<td>High Efficiency Agricultural Pumping</td>
<td>0.01</td>
<td>100.0%</td>
<td>0.01</td>
<td>100.0%</td>
<td>0.01</td>
<td>0.14</td>
<td>0.01</td>
</tr>
</tbody>
</table>

1Table values may not sum to Full Portfolio values due to rounding errors
Business Program Cost Effectiveness Results

Table 3-25: Business Program Total Resource Cost (TRC) Effectiveness

<table>
<thead>
<tr>
<th>Program</th>
<th>TRC Benefits</th>
<th>TRC Costs</th>
<th>TRC Net Benefits</th>
<th>TRC Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrofit FCR</td>
<td>$280,709,868</td>
<td>$247,102,982</td>
<td>$33,606,886</td>
<td>1.14</td>
</tr>
<tr>
<td>Retrofit P4P</td>
<td>$35,920,160</td>
<td>$18,725,361</td>
<td>$17,194,799</td>
<td>1.92</td>
</tr>
<tr>
<td>Small Business Lighting</td>
<td>$20,026,402</td>
<td>$14,001,621</td>
<td>$6,024,781</td>
<td>1.43</td>
</tr>
<tr>
<td>High Performance New Construction</td>
<td>$41,258,675</td>
<td>$61,547,864</td>
<td>($20,289,189)</td>
<td>0.67</td>
</tr>
<tr>
<td>Audit Funding</td>
<td>$9,126,784</td>
<td>$6,110,572</td>
<td>$3,016,212</td>
<td>1.49</td>
</tr>
<tr>
<td>Business Refrigeration</td>
<td>$8,347,413</td>
<td>$5,561,372</td>
<td>$2,786,042</td>
<td>1.50</td>
</tr>
<tr>
<td>PUMPSaver</td>
<td>$6,316,015</td>
<td>$1,508,625</td>
<td>$4,807,391</td>
<td>4.19</td>
</tr>
<tr>
<td>RTUsaver</td>
<td>$3,254,911</td>
<td>$641,282</td>
<td>$2,613,628</td>
<td>5.08</td>
</tr>
<tr>
<td>OPSaver</td>
<td>$117,499</td>
<td>$324,656</td>
<td>($207,157)</td>
<td>0.36</td>
</tr>
<tr>
<td>Existing Building Commissioning</td>
<td>$55,895</td>
<td>$221,981</td>
<td>($166,086)</td>
<td>0.25</td>
</tr>
<tr>
<td>High Efficiency Agricultural Pumping</td>
<td>$36,490</td>
<td>$1,195,673</td>
<td>($1,159,182)</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Table 3-26: Business Program Program Administrator (PAC) Cost Effectiveness

<table>
<thead>
<tr>
<th>Program</th>
<th>PAC Benefits</th>
<th>PAC Costs</th>
<th>PAC Net Benefits</th>
<th>PAC Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrofit FCR</td>
<td>$261,175,579</td>
<td>$77,202,549</td>
<td>$183,973,030</td>
<td>3.38</td>
</tr>
<tr>
<td>Retrofit P4P</td>
<td>$33,554,652</td>
<td>$10,269,423</td>
<td>$23,285,229</td>
<td>3.27</td>
</tr>
<tr>
<td>Small Business Lighting</td>
<td>$19,812,150</td>
<td>$13,640,191</td>
<td>$6,171,959</td>
<td>1.45</td>
</tr>
<tr>
<td>High Performance New Construction</td>
<td>$35,877,108</td>
<td>$6,807,166</td>
<td>$29,069,943</td>
<td>5.27</td>
</tr>
<tr>
<td>Audit Funding</td>
<td>$7,936,334</td>
<td>$2,255,828</td>
<td>$5,680,506</td>
<td>3.52</td>
</tr>
<tr>
<td>Business Refrigeration</td>
<td>$7,258,620</td>
<td>$5,509,178</td>
<td>$1,749,443</td>
<td>1.32</td>
</tr>
<tr>
<td>PUMPSaver</td>
<td>$5,492,187</td>
<td>$1,503,133</td>
<td>$3,989,054</td>
<td>3.65</td>
</tr>
<tr>
<td>RTUsaver</td>
<td>$2,830,357</td>
<td>$773,270</td>
<td>$2,057,087</td>
<td>3.66</td>
</tr>
<tr>
<td>OPsaver</td>
<td>$102,173</td>
<td>$522,540</td>
<td>($420,367)</td>
<td>0.20</td>
</tr>
<tr>
<td>Existing Building Commissioning</td>
<td>$48,604</td>
<td>$236,768</td>
<td>($188,164)</td>
<td>0.21</td>
</tr>
<tr>
<td>High Efficiency Agricultural Pumping</td>
<td>$31,731</td>
<td>$1,136,400</td>
<td>($1,104,669)</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Table 3-27: Business Program Levelized Unit Energy Cost (LUEC)

<table>
<thead>
<tr>
<th>Program</th>
<th>$/kWh</th>
<th>$/kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrofit FCR</td>
<td>$0.022</td>
<td>$166.62</td>
</tr>
<tr>
<td>Retrofit P4P</td>
<td>$0.024</td>
<td>$144.49</td>
</tr>
<tr>
<td>Small Business Lighting</td>
<td>$0.061</td>
<td>$622.03</td>
</tr>
<tr>
<td>High Performance New Construction</td>
<td>$0.024</td>
<td>$160.29</td>
</tr>
<tr>
<td>Audit Funding</td>
<td>$0.016</td>
<td>$60.11</td>
</tr>
<tr>
<td>Business Refrigeration</td>
<td>$0.046</td>
<td>$293.46</td>
</tr>
<tr>
<td>PUMPSaver</td>
<td>$0.021</td>
<td>$83.45</td>
</tr>
<tr>
<td>RTUsaver</td>
<td>$0.038</td>
<td>$287.42</td>
</tr>
<tr>
<td>OPsaver</td>
<td>$0.237</td>
<td>n/a</td>
</tr>
<tr>
<td>Existing Building Commissioning</td>
<td>$0.721</td>
<td>$1,323.55</td>
</tr>
<tr>
<td>High Efficiency Agricultural Pumping</td>
<td>$4.194</td>
<td>$12,570.98</td>
</tr>
</tbody>
</table>