

Market Renewal – Energy Project: Understanding Net Interchange Scheduling Limit (NISL) under MRP

Anthony Clemente: Senior Analyst, Energy Implementation

Objective and Agenda

Objective: To provide an understanding of how the net interchange scheduling limit (NISL) works in today's market and the changes being made for the renewed market.

Agenda:

- Purpose of NISL and its design in today's market
- Challenges with the current market design that does not include the NISL congestion cost in intertie pricing
- How NISL will work in the renewed market

Purpose of NISL

- NISL restricts the hour-to-hour change in net schedules across all interties to a defined threshold
- Ensures Ontario generators can satisfy hour-to-hour ramping requirements without adversely impacting the reliability of the IESO-controlled grid
- Normally set to 700 MW but may be increased under abnormal conditions (e.g. to alleviate shortfall or surplus conditions)
- For more information on how NISL works today, reference the Net Interchange Scheduling Limit Quick Take at: <u>https://www.ieso.ca/-</u> /media/Files/IESO/Document-Library/training/QT-Net-Interchange-Schedule-Limit.ashx

Example A: NISL Binding

• Assuming a NISL of 700 MW, there are binding NISL events in Hours 3 and 4

Hour Ending	1	2	3	4
Total Exports	100 MW	800 MW	0 MW	700 MW
Total Imports	700 MW	1,400 MW	1,300 MW	1,300 MW
Total Net Exports	-600 MW	-600 MW	-1,300 MW	-600 MW
Change From Previous Hour	-	0 MW	-700 MW	+700 MW

• NISL was binding in \sim 8% of all hours between 2018 and 2020

How NISL Works Today

- To respect NISL today, the day-ahead commitment process (DACP) and pre-dispatch (PD) calculation engines may reduce or increase imports and exports that would have otherwise been economically scheduled
- The DACP and PD calculation engines consider the cost, or shadow price, of the NISL congestion component in scheduling but does not reflect this cost in determining intertie prices

Example B: How NISL is Respected Today

• Assuming an hour 1 net import schedule of 500 MW and the following import offers and export bids for hour 2:

Transaction	Hour 2 Offers and Bids		
Import A	1,300 MW@ \$30		
Import B	300 MW @ \$35		
Export C	100 MW @ \$50		
Export D	300 MW @ \$34		

- At an hour 2 intertie price of \$38, transactions A,B,C are economic and D is uneconomic, resulting in a potential net import schedule of 1500 MW
- However, the net import schedule must be limited to 1200 MW to respect a NISL limit of 700 MW

Example B: How NISL is Respected Today (cont'd)

• To produce a net import schedule of 1200 MW in hour 2, DACP and PD would evaluate the lowest cost from the following options:

Option	Economic Schedule	Schedule to Respect NISL	Offer/Bid Price	Cost [(Intertie Price – Offer/Bid Price) x Schedule Change to Respect NISL
Do not schedule Import B	300 MW	0 MW	\$35	(\$38 - \$35) x 300 MWh = \$900
Schedule Export D	0 MW	300 MW	\$34	(\$38 - \$34) x 300 MWh = \$1200

- Import B will not be scheduled as it maximizes gains from trade while respecting NISL
- The cost associated with reducing import B from its economic schedule is recovered through a make-whole payment

Challenges With Current NISL Design

By not including the NISL congestion component in intertie prices today, we have seen two main market impacts:

- 1. Incorrect intertie price signals
- 2. Unnecessary make-whole payments

Impact 1: Incorrect Intertie Price Signals

- Excluding the NISL congestion component from intertie prices can result in intertie prices that are counter-intuitive to the schedules produced to respect NISL because the marginally scheduled transaction is precluded from setting price
- Recall from example B, import B was not scheduled at an offer of \$35 despite an intertie price of \$38
- Not incorporating the NISL congestion component prevented the intertie price from being reduced to a level that should attract more exports and less imports

Impact 2: Unnecessary Make-Whole Payments

- Excluding the NISL congestion component from intertie prices can result in unnecessary make whole payments for transactions that are uneconomically scheduled relative to the intertie price
- From example B, import B would receive a make whole payment of \$900 [(\$38 - \$35) x 300 MW] for not being scheduled at an intertie price of \$38
- The import B make-whole payment is unnecessary because it would not have been required if the intertie price was reflective of NISL

Intertie Prices in the Renewed Market

• The renewed market design intends to minimize these impacts by including the NISL component in the intertie prices as follows:

Intertie Border Price (IBP)_{LMP} + Ext_Cong_{LMP} + **NISL_Cong_{LMP}**

Where,

IBP*_{LMP} = reference component + loss component + internal congestion component Ext_Cong_{LMP} = congestion component associated with intertie import/export limits **NISL_Cong_{LMP} = congestion component associated with NISL limit** *Today's IBP = Market Clearing Price

• Future IBP and Ext_Cong components can be different for each intertie price, whereas the NISL_Cong component is equal for all intertie prices

How Scheduling Respects NISL in the Future

• From example B, recall the hour 1 net import schedule of 500 MW and the same import offers and export bids for hour 2:

Transaction	Hour 2 Offers and Bids
Import A	1,300 MW@ \$30
Import B	300 MW @ \$35
Export C	100 MW @ \$50
Export D	300 MW @ \$34

- Assuming an intertie border price (IBP) of \$38, the future day-ahead market (DAM) and PD engines will, similar to today, evaluate whether not scheduling import B or scheduling export D is the optimal solution to respect NISL
- Import B will not be scheduled as it maximizes gains from trade

How NISL Congestion Component is Determined

 To calculate the NISL congestion component for the intertie price, the DAM and PD engines need to determine the savings of increasing NISL by 1 MW

Transaction	Hour 2 Offers and Bids	Hour 2 Schedule to Satisfy 700 MW NISL	Eligible to satisfy next MW (701 MW NISL)?	Savings (Difference Between IBP and Eligible Offer/Bid)
Import A	1,300 MW@ \$30	1,300 MW	No	N/A
Import B	300 MW @ \$35	0 MW	Yes	\$3 (\$38 - \$35)
Export C	100 MW @ \$50	100 MW	Yes	-\$12 (\$38 - \$50)
Export D	300 MW @ \$34	0 MW	No	N/A

• The DAM and PD engines would increase import B rather than reduce export C as it results in a higher savings

Intertie Price with NISL & Make Whole Payment Impact

• The intertie price for hour 2 would be:

 $IBP_{LMP} + Ext_Cong_{LMP} + NISL_Cong_{LMP} = $38 + $0 + (-$3) = 35

- A \$35 intertie price that includes NISL incentivizes more exports and less imports relative to a \$38 intertie price that does not include NISL
- No make whole payments are required as no transactions are uneconomically scheduled relative to the intertie price

Summary

- Future intertie prices will include the NISL congestion component when NISL is binding
- Including this component results in intertie prices that better align with the schedules produced to respect NISL and minimize unnecessary make whole payments

ieso.ca

1.888.448.7777

customer.relations@ieso.ca

engagement@ieso.ca

