DECEMBER 14, 2022

Market Renewal Program: Market Settlements Additional Examples (Part 3 of 3)

Jessica Tang: Senior Manager, Energy Implementation Patricia Murray, Tim Cary, Denise Myers: Supervisors, Energy Implementation

Webinar Participation

Ways to interact in today's webinar:

- Raise your hand (click the "Raise Hand" button in the top right corner) to let the host know you'd like to verbally ask a question or make a comment. The facilitator will let you know when to unmute
- Enter a written question/comment in the chat. The facilitator will read it out for you
- Microphones should remain muted, unless the facilitator has called on you to unmute yourself

Meeting Purpose and Agenda

Purpose: Prepare stakeholders for their review of the proposed market rules and market manuals that codify the Market Settlements detailed designs

Agenda:

- Brief overview of conforming changes to Market Entry obligations and procedures
- Overview of structure and content of the proposed market rules and market manuals for Settlements and Billing
- Review basic examples of settlement amounts

Approach

- Market settlements is by nature very calculations-heavy
- To assist in understanding, the IESO has prepared a number of examples for stakeholder review
- To further aid synthesis of the rules, or to aid broader understanding of Market Renewal, stakeholders are encouraged to ask for additional scenarios and examples

Engagement Timeline

December 1: Materials posted for stakeholder review

December 14: Introduction and discussion with participants

Throughout December and January: Stakeholders can request additional examples or scenarios through engagement@ieso.ca

Mid-January: Segmented discussions with stakeholders to review examples/scenarios

February 21: Comments/feedback on market rules and market manuals due to IESO

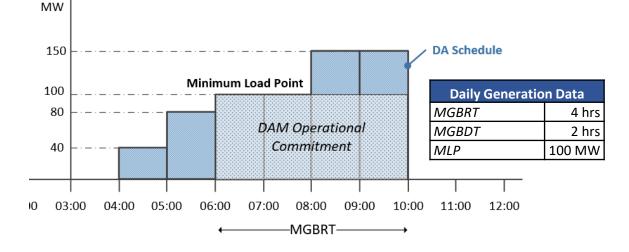
Segmented Stakeholder Discussions

The IESO will host stakeholder meetings in mid-January for market participants to review the base-case(s) and answer any additional participant questions relating to settlement

Meetings dates/times are posted on the Market Renewal Implementation webpage for stakeholder sign-up: <u>https://www.ieso.ca/en/Market-</u> <u>Renewal/Stakeholder-Engagements/Implementation-Engagement-</u> <u>Market-Rules-and-Market-Manuals</u>

Market Settlement Batch:

Additional Examples



Additional Examples:

Day-Ahead Market Generator Offer Guarantee (DAM GOG)

- Resource is scheduled in the day-ahead market from HE5 to HE10 with day-ahead operational commitment from HE7 to HE10
- Resource is scheduled out of merit in hour HE9 and HE10

	DAM Price and Schedule			
HE	HE DA_LMP (\$) DA_QSI (MW)			
5	35	40		
6	35	80		
7	35	100		
8	35	100		
9	35	150		
10	35	150		

Resource has <u>no</u> OR schedule

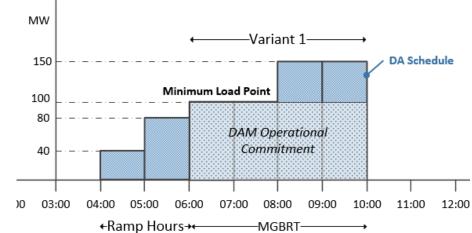
• The energy offers are the same for all of the scheduled hours

Start-Up Offer \$	DAM Energy Offers (DAM_BE)		
(DAM_BE_SU)	Quantity (MW)	PQ # Price (\$/MWh) Quantity (MW)	
10,000	0	35	1
	100	35	2
SNL Offer \$	200	40	3
(DAM_BE_SNL)	300	50	4
800			

 Resource received DAM_MWP for HE9 and HE 10 for following dispatch

DAM_MWP				
HE	DAM_MWP (\$)			
9	250			
10	250			

 Resource injects in real-time and achieves MLP at the first interval of the day-ahead operational commitment


RT Hourly Schedule and Injection			
HE	RT_QSI (MW)	AQEI (MW)	
5	40	40	
6	80	80	
7	100	100	
8	100	100	
9	150	150	
10	150	150	

*Assumption: resource is scheduled and injecting at the day-ahead position in all of the scheduled hours

Step 1: Determine the commitment period, variant number and ramp hours for GOG calculation

HE	Period Definition	Variant #
5	Ramp-up period	
6	Ramp-up period	
7	Day-ahead commitment period	1
8	Day-ahead commitment period	1
9	Day-ahead commitment period	1
10	Day-ahead commitment period	1

DAM_GOG for Variant 1 = Max(0, COMP1 + COMP2 + COMP4 - COMP5)

Step 2: Calculation of DAM_GOG Component 1

DAM_GOG_COMP1 = - OP(DAM Energy) + SNL Cost - Ramp Revenue

	- 1 x OP(DAM Energy)			
HE	E -1 x OP(DAM_LMP,DAM_QSI,DAM_BE)			
5				
6				
7	-1 x (35\$/MWh x 100MW - 35\$/MWh x 100MW) =	0		
8	-1 x (35\$/MWh x 100MW - 35\$/MWh x 100MW) =	0		
9	-1 x (35\$/MWh x 150MW - 40\$/MWh x 50MW - 35\$/MWh x 100MW) =	250		
10	-1 x (35\$/MWh x 150MW - 40\$/MWh x 50MW - 35\$/MWh x 100MW) =	250		

 The operating profit for energy will be calculated for each hour of the commitment period from HE7 to HE10, excluding the ramp hours

Step 2: Calculation of DAM_GOG Component 1

SNL Cost				
HE	E N - # of Inj Int DAM_BE_SNL x N/12			
5				
6				
7	12	800 x 12/12 =	800	
8	12	800 x 12/12 =	800	
9	12	800 x 12/12 =	800	
10	12	800 x 12/12 =	800	

- The speed-no-load will be calculated for each hour of the commitment period starting from HE7 to HE10
- N is the number of metering intervals in settlement hour that the resource was synchronized and injecting energy into the grid
- As resource is injecting for all four hours of the commitment period, N=12 for all four hours

Step 2: Calculation of DAM_GOG Component 1

	- Ramp Revenue				
HE	HE - DAM_LMP x DAM_QSI				
5	- 35\$ x 40 MW =	-1,400			
6	- 35\$ x 80 MW =	-2,800			
7					
8					
9					
10					

Step 2: Calculation of DAM_GOG Component 1

COMF	COMP1 = - OP(DAM Energy) + SNL Cost – Ramp Revenue					
HE	-OP (DAM Energy)	SNL Cost	-Ramp Revenue	COMP1		
5			-1,400	-1,400		
6			-2,800	-2,800		
7	0	800		800		
8	0	800		800		
9	250	800		1,050		
10	250	800		1,050		

Step 3: Calculation of DAM_GOG Component 4

$DAM_GOG_COMP4 = DAM_BE_SU$

COMP4 = DAM_BE_SU					
HE	DAM_BE_SU	COMP4			
5					
6					
7	10,000	10,000			
8					
9					
10					

- The start-up offer associated with the first hour (HE7) of the commitment period is considered in the GOG calculation
- As the resource achieves MLP on time at the first interval of the commitment period, the **full** start-up offer is included in the calculation

Step 4: Calculation of DAM_GOG Component 5

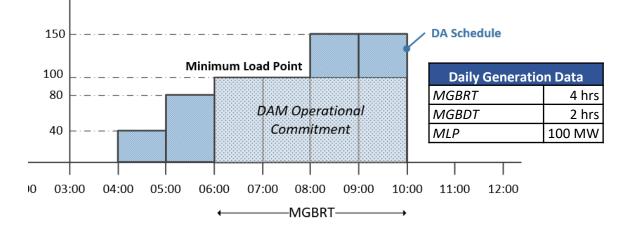
DAM_GOG_COMP5 = DAM_MWP

COMP5				
HE	DAM_MWP	COMP5		
5				
6				
7				
8				
9	250	250		
10	250	250		

Step 5: Calculation of DAM GOG

DAN	DAM_GOG = Max(0, COMP1 + COMP2 + COMP4 - COMP5)					
HE	COMP1	COMP2	COMP4	- COMP5	Total	
5	-1,400			0	-1,400	
6	-2,800			0	-2,800	
7	800		10,000	0	10,800	
8	800			0	800	
9	1,050			-250	800	
10	1,050			-250	800	
Total	-500	0	10,000	-500	9,000	
	DAM_GOG = Max(0,9000) = \$9,000					

Resource has no OR schedule: COMP2 = 0


The DAM_GOG (**\$9,000**) is a positive value; hence the following settlement amounts will appear on the settlement statement:

Settlement Amounts on Settlement Statement								
HE5 HE6 HE7 HE8 HE9 HE3							HE 10	
1804	Day-Ahead Market generator Offer Gurantee - Energy	-\$1,400	-\$2,800	\$800	\$800	\$1,050	\$1,050	
1807	Day-Ahead Market generator Offer Gurantee - Start Up			\$10,000				
1808	Day-Ahead Market generator Offer Gurantee - DAM Make-Whole Payment Offset					-\$250	-\$250	

- Resource is scheduled in the day-ahead market from HE5 to HE10 with day-ahead operational commitment from HE7 to HE10
- Resource did not reach MLP until HE8 interval 1

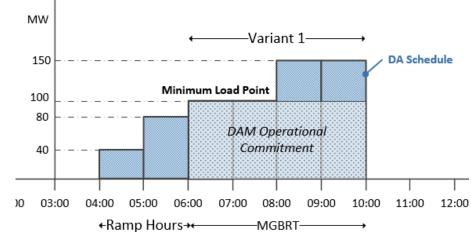
	DAM Price and Schedule					
HE	DA_LMP (\$)	DA_QSI (MW)				
5	40	40				
6	40	80				
7	40	100				
8	40	100				
9	40	150				
10	40	150				

MW

• The energy offers are the same for all of the scheduled hours

Start	s (DAM_BE)	DAM Energy Offers (DAM_BE)					
(DAI	Quantity (MW)	PQ # Price (\$/MWh) Quantity (MW)					
	0	35	1				
CN	100	35	2				
SN (DAA	200	40	3				
(DAN	300	50	4				

• Resource injects in real-time and achieves MLP at the first interval HE8, 1 hour late for its day-ahead commitment period


RT Hourly Schedule and Injection						
HE	HE RT_QSI (MW) AQEI (MW)					
5	40	40				
6	80	80				
7	80	80				
8	100	100				
9	150	150				
10	150	150				

*Resource is scheduled and injecting in real-time at the same level.

Step 1: Determine the commitment period, variant number and ramp hours for GOG calculation

HE	Period Definition	Variant #
5	Ramp-up period	
6	Ramp-up period	
7	Day-ahead commitment period	1
8	Day-ahead commitment period	1
9	Day-ahead commitment period	1
10	Day-ahead commitment period	1

DAM_GOG for Variant 1 = Max(0, COMP1 + COMP2 + COMP4 - COMP5)

Step 2: Calculation of DAM_GOG Component 1

DAM_GOG_COMP1 = - OP(DAM Energy) + SNL Cost - Ramp Revenue

	- 1 x OP(DAM Energy)						
HE	HE -1 x OP(DAM_LMP,DAM_QSI,DAM_BE)						
5							
6							
7	-1 x (40\$/MWh x 100MW - 35\$/MWh x 100MW) =	-500					
8	-1 x (40\$/MWh x 100MW - 35\$/MWh x 100MW) =	-500					
9	-1 x (40\$/MWh x 150MW - 40\$/MWh x 50MW - 35\$/MWh x 100MW) =	-500					
10	-1 x (40\$/MWh x 150MW - 40\$/MWh x 50MW - 35\$/MWh x 100MW) =	-500					

The operating profit for energy will be calculated for each hour of the commitment period from HE7 to HE10, excluding the ramp hours

Step 2: Calculation of DAM_GOG Component 1

SNL Cost								
HE	HE N - # of Inj Int DAM_BE_SNL x N/12							
5								
6								
7	12	800 x 12/12 =	800					
8	12	800 x 12/12 =	800					
9	12	800 x 12/12 =	800					
10	12	800 x 12/12 =	800					

- The speed-no-load will be calculated for each hour of the commitment period starting from HE7 to HE10
- N is the number of metering intervals in settlement hour that the resource was synchronized and injecting energy into the grid
- As resource is injecting for all four hours of the commitment period, N=12 for all four hours

Step 2: Calculation of DAM_GOG Component 1

	- Ramp Revenue					
HE	HE - DAM_LMP x DAM_QSI					
5	- 40\$ x 40 MW =	-1,600				
6	- 40\$ x 80 MW =	-3,200				
7						
8						
9						
10						

Step 2: Calculation of DAM_GOG Component 1

со	COMP1 = - OP(Energy) + SNL Cost – Ramp Revenue								
HE	-OP (Energy)	SNL Cost	-Ramp Revenue	COMP1					
5			-1,600	-1,600					
6			-3,200	-3,200					
7	-500	800		300					
8	-500	800		300					
9	-500	800		300					
10	-500	800		300					

Step 3: Calculation of DAM_GOG Component 4

DAM_GOG_COMP4 = DAM_BE_SU - DAM_BE_SU x N_INT/12

	COMP4								
HE	N_INT	DAM_BE_SU - DAM_BE_SU x N_INT /12	COMP4						
5									
6									
7	6	10,000 - 10,000 × 6/12 =	5,000						
8									
9									
10									

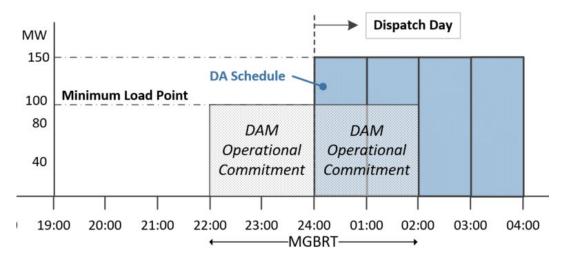
- The start-up offer associated with the first hour (HE7) of the commitment period is considered in the GOG calculation
- N_INT is the number of metering intervals after the first six metering intervals that the resource took to achieve its MLP
- Resource reaches MLP in HE8 interval 1, it took the resource 6 intervals after the first six metering intervals to reach MLP: N_INT = 6

Step 4: Calculation of DAM GOG

DAN	DAM_GOG = Max(0, COMP1 + COMP2 + COMP4 - COMP5)									
HE	COMP1	COMP2	COMP4	- COMP5	Total					
5	-1,600				-1,600					
6	-3,200				-3,200					
7	300		5,000		5,300					
8	300				300					
9	300				300					
10	300				300					
Total	-3,600	0	5,000		1400					
	DAM_GOG = Max(0,1400) = \$1,400									

Resource has no OR schedule: COMP2 = 0

Resource is scheduled economically in all hours of the commitment period, therefore no DAM_MWP is generated: COMP5 = 0


The DAM_GOG (**\$1,400**) is a positive value; hence the following settlement amounts will appear on the settlement statement:

	Settlement Amounts on Settlement Statement							
HE5 HE6 HE7 HE8 HE9						HE 10		
	1804	Day-Ahead Market generator Offer Gurantee - Energy	-\$1,600	-\$3,200	\$300	\$300	\$300	\$300
	1807 Day-Ahead Market generator Offer Gurantee - Start Up				\$5,000			

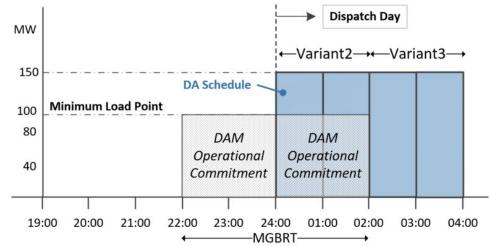
- Resource is scheduled in HE1 and HE2 of the dispatch day to complete its MGBRT from the previous day
- Resource is scheduled beyond its MGBRT for additional 2 hours from HE3 to HE4

DAM Price and Schedule		
HE	DA_QSI (MW)	
1	40	150
2	40	150
3	40	150
4	40	150

Daily Generation Data	
MGBRT	4 hrs
MGBDT	2 hrs
MLP	100 MW

The energy offers are the same for all of the ٠ scheduled hours

Start-Up Offer \$; (DAM_BE)	AM Energy Offers	D
(DAM_BE_SU)	Quantity (MW)	Price (\$/MWh)	PQ #
10,000	0	35	1
	100	35	2
SNL Offer \$	200	40	3
(DAM_BE_SNL)	300	50	4
800			


Resource is scheduled and injecting at the ٠ day-ahead position in all of the scheduled hours

RT Hourly Schedule and Injection				
HE	RT_QSI (MW)	AQEI (MW)		
1	150	150		
2	150	150		
3	150	150		
4	150	150		

Step 1: Determine the commitment period, variant number and ramp hours for GOG

HE	Period Definition	Variant #
7	Day-ahead commitment period	2
8	Day-ahead commitment period	2
9	9 Day-ahead commitment period 3	
10	Day-ahead commitment period	3

DAM_GOG for Variant 2 = Max(0, COMP1 + COMP2 - COMP3 - COMP5)

DAM_GOG for Variant 3 = Max(0, COMP1 + COMP2 - COMP5)

calculation

Step 2: Calculation of DAM_GOG Component 1

DAM_GOG_COMP1 = - OP(DAM Energy) + SNL Cost - Ramp Revenue

	- 1 x OP(DAM Energy)	
HE -1 x OP(DAM_LMP,DAM_QSI,DAM_BE) Result		Result
1	-1 x (40\$/MWh x 150MW - 40\$/MWh x 50MW - 35\$/MWh x 100MW) =	-500
2	-1 x (40\$/MWh x 150MW - 40\$/MWh x 50MW - 35\$/MWh x 100MW) =	-500
3	-1 x (40\$/MWh x 150MW - 40\$/MWh x 50MW - 35\$/MWh x 100MW) =	-500
4	-1 x (40\$/MWh x 150MW - 40\$/MWh x 50MW - 35\$/MWh x 100MW) =	-500

 The operating profit for energy will be calculated for each hour of the commitment period from HE1 to HE4

Step 2: Calculation of DAM_GOG Component 1

DAM_GOG_COMP1 = - OP(DAM Energy) + SNL Cost - Ramp Revenue

SNL Cost			
HE	N - # of Inj Int	DAM_BE_SNL x N/12	Result
1	12	800 x 12/12 =	800
2	12	800 x 12/12 =	800
3	12	800 x 12/12 =	800
4	12	800 x 12/12 =	800

Ramp Revenue = 0

- The speed-no-load will be calculated for each hour of the commitment period from HE1 to HE4
- N is the number of metering intervals in settlement hour that the resource was synchronized and injecting energy into the grid.
- As resource is injecting for all four hours of the commitment period, N=12 for all four hours
- No ramp period associated with the commitment period, therefore Ramp Revenue = 0

Step 2: Calculation of DAM_GOG Component 1

DAM_GOG_COMP1 = - OP(DAM Energy) + SNL Cost - Ramp Revenue

со	COMP1 = - OP(Energy) + SNL Cost – Ramp Revenue								
HE	-OP (Energy)	SNL Cost	-Ramp Revenue	COMP1					
1	-500	800		300					
2	-500	800		300					
3	-500	800		300					
4	-500	800		300					

Step 3: Calculation of DAM_GOG Component 3

 $DAM_GOG_COMP3 = -1 \times OP(MLP) + SNL Cost$

	- 1 x OP(DAM Energy)					
HE	-1 x OP(DAM_LMP,MLP,DAM_BE)	Result				
1	-1x(40\$/MWh x 100MW - 35\$/MWh x 100MW) =	-500				
2	-1x(40\$/MWh x 100MW - 35\$/MWh x 100MW) =	-500				
3						
4						

 Component 3 applies only the Variant 2 hours

Step 3: Calculation of DAM_GOG Component 3

 $DAM_GOG_COMP3 = -1 \times OP(MLP) + SNL Cost$

SNL Cost					
HE	N - # of Inj Int	DAM_BE_SNL x N/12	Result		
1	12	800 x 12/12 =	800		
2	12	800 x 12/12 =	800		

- Component 3 applies only the Variant 2 hours
- N is the number of metering intervals in settlement hour that the resource was synchronized and injecting energy into the grid
- As resource is injecting for both hours of the commitment period, N=12 for both hours

Step 4: Calculation of DAM GOG

DA	DAM_GOG = Max(0, COMP1 + COMP2 - COMP 3 - COMP5)							
HE		COMP1	COMP2	- COMP3	- COMP5	Total		
1	L	300		- 300		0		
2	2	300		- 300		0		
3	3	300				300		
4	1	300				300		
Total		1,200	0	- 600	0	600		
	DAM_GOG = Max(0,600) = \$600							

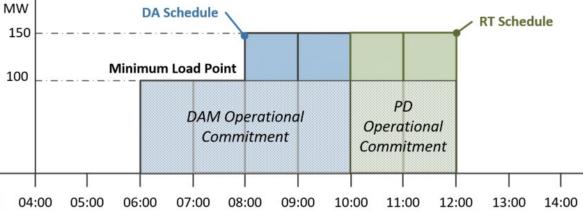
Resource has no OR schedule: COMP2 = 0

Resource is scheduled economically in all hours of the commitment period, therefore no DAM_MWP is generated: COMP5 = 0

The DAM_GOG (**\$600**) is a positive value; hence the following settlement amounts will appear on the settlement statement:

Settlement Amounts on Settlement Statement							
		HE 1	HE 2	HE 3	HE 4		
1804	Day-Ahead Market generator Offer Gurantee - Energy	\$300	\$300	\$300	\$300		
1806	Day-Ahead Market generator Offer Gurantee - Over Midnight	-\$300	-\$300				

Additional Examples: Real-Time Generator Offer Guarantee (RT GOG)



 Resource is committed by the pre-dispatch engine with an operational commitment from **HE11 to HE12**, after a DAM commitment

Daily Generation Data				
MGBRT	4 hrs			
MGBDT	2 hrs			
MLP	100 MW			

RT Price and Schedule						
HE	RT_LMP (\$)	RT_QSI (MW)				
7	40	100				
8	40	100				
9	40	150				
10	40	150				
11	40	150				
12	40	150				

DAM Price and Schedule							
HE DAM_LMP (\$) DAM_QSI (MV							
7	40	100					
8	40	100					
9	40	150					
10	40	150					
11	-	-					
12	-	-					

• The energy offers are the same for all of the scheduled hours

Start-Up Offer \$	ers (BE)	RT Energy Offers (BE)				
(PD_BE_SU)	Quantity (MW)	Price (\$/MWh)	PQ #			
10,000	0	35	1			
SNL Offer \$	100	35	2			
(PD_BE_SNL)	200	40	3			
800	300	50	4			

 Resource injects in real-time and achieves MLP at the first interval of the pre-dispatch operational commitment

RT Hourly Schedule and Injection						
HE	RT_QSI (MW)	AQEI (MW)				
7	100	100				
8	100	100				
9	150	150				
10	150	150				
11	150	150				
12	150	150				

*Assumption: resource is injecting at the real-time scheduled position

Step 1: Determine the commitment period, variant number and ramp hours for RT_GOG calculation

HE	Period Definition	Variant #	MW 150	DA Schedule	← Variant3→ RT Schedu	ule
	-	-		T I		
8	-	-	100	Minimum Load Point		
9	-	-	100			
10	-	-		DAM Operational	PD	
11	Real-time commitment period	3		Commitment	Operational Commitment	
12	Real-time commitment period	3				
) 04	00 05:00 06:00 07:00 08:00 09:00 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14

RT_GOG for Variant 3 = Max(0, COMP1 + COMP2 - COMP5)

Step 2: Calculation of RT_GOG Component 1

RT_GOG_COMP1 = - OP(RT Energy) + SNL Cost - Ramp Revenue

- 1 x OP(RT Energy)					
HE	-1 x Max(OP(RT_LMP,RT_QSI,BE), OP(RT_LMP,AQEI,BE))***	Result			
11	-1 x (40\$/MWh x 150MW - 40\$/MWh x 50MW - 35\$/MWh x 100MW) =	-500			
12	-1 x (40\$/MWh x 150MW - 40\$/MWh x 50MW - 35\$/MWh x 100MW) =	-500			

As RT_QSI=AQEI, the operating profit calculation is the same for the two quantities

SNL Cost				
HE	N - # of Inj Int	PD_BE_SNL x N/12	Result	
9	12	800 x 12/12 =	800	
10	12	800 x 12/12 =	800	

 As there are no ramp hours associated with this commitment period, Ramp Revenue = 0

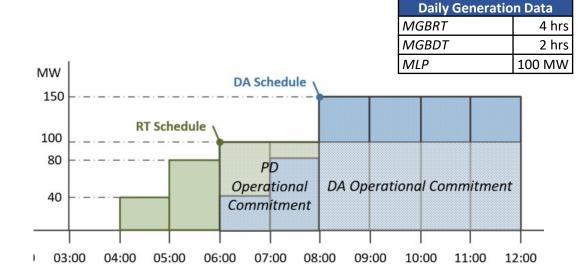
Step 2: Calculation of RT_GOG Component 1

RT_GOG_COMP1 = - OP(RT Energy) + SNL Cost - Ramp Revenue

COMP1 = - OP(RT Energy) + SNL Cost – Ramp Revenue				
HE	-OP (RT Energy)	SNL Cost	-Ramp Revenue	COMP1
11	-500	800		300
12	-500	800		300

Step 5: Calculation of RT GOG

RT_GOG = Max(0, COMP1 + COMP2 - COMP5)							
HE	COMP1	COMP2	- COMP5	Total			
11	300			300			
12	300			300			
Total	Total 600 0 0 600						
RT_GOG = Max(0,600) = \$600							


Settlement Amounts on Settlement Statement		
	HE 11	HE 12
1910 Real-Time Generator Offer Guarantee - Energy	\$300	\$300

- Resource has no OR schedule: COMP2 = 0
- Resource is scheduled economically in all hours of the commitment period, therefore no RT_MWP is generated: COMP5 = 0

 Resource is committed by the pre-dispatch engine with a pre-dispatch operational commitment from HE7 to HE8 in advance of a DAM commitment starting from HE9

RT Price and Schedule				
HE	RT_LMP (\$)	RT_QSI (MW)		
5	40	40		
6	40	80		
7	40	100		
8	40	100		
9	40	150		
10	40	150		
11	40	150		
12	40	150		

DAM Price and Schedule					
HE	DAM_LMP (\$)	DAM_QSI (MW)			
7	40	40			
8	40	80			
9	40	150			
10	40	150			
11	40	150			
12	40	150			

The energy are the same for all of the scheduled • hours

Offer \$

12,000

800

10,000

800

Start-Up Offer \$ (DAM_BE_SU)

SNL Offer \$

(DAM_BE_SNL)

Start-Up Offer S	RT Energy Offers (BE)		
(PD_BE_SU)	Quantity (MW)	Price (\$/MWh)	PQ #
12,00	0	35	1
SNL Offer \$	100	35	2
(PD_BE_SNL)	200	40	3
	300	50	4
8			

DAM Energy Offers (DAM_BE)				
PQ # Price (\$/MWh) Quantity (MW)				
1	35	0		
2	35	100		
3	40	200		
4	50	300		

Resource injects in real-time and achieves ٠ MLP at the first interval of the pre-dispatch operational commitment

RT Hourly Schedule and Injection				
HE	RT_QSI (MW)	AQEI (MW)		
5	40	40		
6	80	80		
7	100	100		
8	100	100		
9	150	150		
10	150	150		
11	150	150		
12	150	150		

*Assumption: resource is injecting at the real-time scheduled position

Step 1: Determine the commitment period, variant number and ramp hours for GOG calculation

			MW
HE	Period Definition	Variant #	DA Schedule
5	Ramp-up period		
6	Ramp-up period		100 RT Schedule
7	Real-time commitment period	1	80
8	Real-time commitment period	1	PD
9	-	-	40 40 40
10	-	-	Commitment
11	-	-	
12	-	-	03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00
			←Ramp Hours→──Variant 1→

PT GOG

DAM_GOG for Variant 1 = Max(0, COMP1 + COMP2 + COMP4 - COMP5)

Step 2: Calculation of RT_GOG Component 1

RT_GOG_COMP1 = - OP(RT Energy) + SNL Cost - Ramp Revenue + DAM Revenue

	- 1 x OP(RT Energy)	
HE	-1 x Max(OP(RT_LMP,RT_QSI,BE), OP(RT_LMP,AQEI,BE))***	Result
5		
6		
7	-1 x (40\$/MWh x 100MW - 35\$/MWh x 100MW) =	-500
8	-1 x (40\$/MWh x 100MW - 35\$/MWh x 100MW) =	-500

As RT_QSI=AQEI, the operating profit calculation is the same for the two quantities

The operating profit for energy will be calculated for each hour of the commitment period from HE7 to HE8 excluding the ramp hours

Step 2: Calculation of RT_GOG Component 1

RT_GOG_COMP1 = - OP(RT Energy) + SNL Cost - Ramp Revenue

SNL Cost			
HE	N - # of Inj Int	PD_BE_SNL x N/12	Result
5			
6			
7	12	800 x 12/12 =	800
8	12	800 x 12/12 =	800

- The speed-no-load will be calculated for each hour of the commitment period starting from HE7 to HE8
- N is the number of metering intervals in settlement hour that the resource was synchronized and injecting energy into the grid
- As resource is injecting for all four hours of the commitment period, N=12 for all two hours

Step 2: Calculation of RT_GOG Component 1

RT_GOG_COMP1 = - OP(RT Energy) + SNL Cost - Ramp Revenue + DAM Revenue

- Ramp Revenue				
HE	- RT_LMP x AQEI	Result		
5	- 40\$ x 40 MW =	-1,600		
6	- 40\$ x 80 MW =	-3,200		
7				
8				

+ DAM Revenue				
HE	+ DAM_LMP x DAM_QSI	Result		
5				
6				
7	40\$ x 40 MW =	1,600		
8	40\$ x 80 MW =	3,200		

Step 2: Calculation of RT_GOG Component 1

RT_GOG_COMP1 = - OP(RT Energy) + SNL Cost – Ramp Revenue + DAM Revenue

	COMP1 = - OP(RT Energy) + SNL Cost – Ramp Revenue					
HE	-OP (RT Energy)	SNL Cost	-Ramp Revenue	DAM Revenue	COMP1	
5			-1,600		-1,600	
6			-3,200		-3,200	
7	-500	800		1,600	1,900	
8	-500	800		3,200	3,500	

Step 4: Calculation of RT_GOG Component 4

 $RT_GOG_COMP4 = PD_BE_SU - DAM_BE_SU$

	COMP4 = PD_BE_SU – DAM_BE_SU					
HE	PD_BE_SU – DAM_BE_SU	COMP4				
5						
6						
7	=12,000 - 10,000	2,000				
8						
9						
10						

- The start-up offer associated with the first hour (HE7) of the commitment period is considered in the RT_GOG calculation
- The resource is committed in advance of a DAM commitment, therefore only the incremental start-up offer above the day-ahead offer is considered

Step 5: Calculation of RT GOG

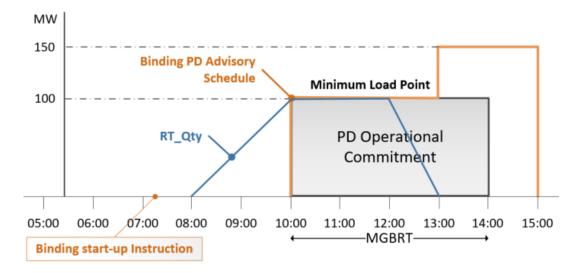
F	RT_GOG = Max(0, COMP1 + COMP2 + COMP4 - COMP5)					
HE		COMP1	COMP2	COMP4	- COMP5	Total
	5	-1,600				-1,600
	6	-3,200				-3,200
	7	1,900		2,000		3,900
	8	3,500				3,500
Total		600		2,000	0	2,600
	RT_GOG = Max(0,2600) = \$2,600					

Settlement Amounts on Settlement Statement					
HE 5 HE 6 HE 7 HE					HE 8
1910	Real-Time Generator Offer Guarantee - Energy	-\$1,600	-\$3,200	\$1,900	\$3,500
1913	Real-Time Generator Offer Guarantee - Start Up			\$2,000	

Resource has no OR schedule: COMP2 = 0

Resource is scheduled economically in all hours of the commitment period, therefore no RT_MWP is generated: COMP5 = 0

Additional Examples: Generator Failure Charge (GFC)



GFC – Scenario 2

GFC – Scenario 2

- PD engine issues a binding start-up instruction at 7:15 for a commitment from HE11 to HE14
- The resource has a binding PD advisory schedule (issued at 7:15) from HE11 to HE15
- Resource drops below MLP halfway through its MGBRT at HE13 interval 1

RT Price and Schedule					
HE RT_LMP (\$) RT_QSI (MW)					
11	40	100			
12	40	100			
13	50	50			
14	50	0			
15	50	0			

Daily Generation Data				
MGBRT	4 hrs			
MGBDT	2 hrs			
MLP	100 MW			

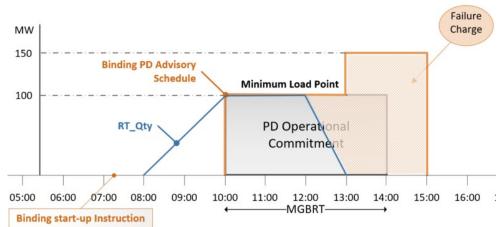
GFC – Scenario 2

• The energy offers are the same for all of the scheduled hours

	PD Energy Offe	ers (BE)		Start-Up Offer \$
PQ #	Price (\$/MWh)	Quantity (MW)		(PD_BE_SU)
1	35	0		5,000
2	35	100	Г	
3	40	200		SNL Offer \$
4	50	300		(PD_BE_SNL)
				900

• The binding PD advisory schedule at 7:15 schedules the resource from HE11 to HE15

PD Advisory Price and Schedule				
HE	PD_LMP@BSUI	PD_QSI@BSUI		
11	36	100		
12	36	100		
13	36	100		
14	42	150		
15	42	150		



Determine the failure period for GFC calculation

Failure Event: Failing to complete its minimum generation block run-time

<u>Failure Period:</u> From the first metering interval where the GOG-eligible resource has a real-time schedule less than its minimum loading point, until the last metering interval where the GOG-eligible resource has a binding pre-dispatch advisory schedule issued at the time of start-up notice

HE	Period Definition
13	Failure hour (All intervals)
14	Failure hour (All intervals)
15	Failure hour (All intervals)

GFC_MPC is calculated as:

 $GFC_MPC = -1 \times (RT_LMP - PD_LMP) \times (PD_QSI - AQEI)$

	GFC_MPC					
HE	-1 x (RT_LMP - PD_LMP) x (PD_QSI - AQEI)	MPC				
13	-1 x (50 - 36) x (100 - 50) =	-700				
14	-1 x (50 - 42) x (150 - 0) =	-1,200				
15	-1 x (50 - 42) x (150 - 0) =	-1,200				

Step 1: Determine the prorating factor for Start-up Offer - PD_SU_Ratio PD_SU_Ratio = Min(1,MLP_INJ/MGBRT)

* MLP_INJ is the number of metering intervals within the MGBRT period that the resource is injecting below MLP

MLP_INJ = 12 intervals x 2 hours = 24

* MGBRT is the number of metering intervals of the minimum generation block run-time

MGBRT = 12 intervals x 4 hours = 48

PD_SU_Ratio = Min(1,MLP_INJ/MGBRT) = Min(1,24/48) = <u>1/2</u>

Step 2: Determine the GCC for each hour

PD_SU_Ratio x SU_INCR				
HE	PD_SU_Ratio	SU_INCR = PD_BE_SU	PD_SU_Ratio x SU_INCR	Result
13	1/2	5,000	= 1/2 x 5,000 =	2,500
14				
15				

- The start-up offer associated with the first hour (HE11) of the commitment period is considered in the GFC_GCC calculation
- As HE11 is not part of the failure period, the pro-rated start-up offer is included in the first hour of the failure period in HE13

Step 2: Determine the GCC for each hour

SNL Cost				
HE	N - # of Inj Int	PD_BE_SNL x N/12	Result	
13	12	900 x 12/12 =	900	
14	12	900 x 12/12 =	900	
15	12	900 x 12/12 =	900	

- The speed-no-load will be calculated for each hour of the failure period from HE13 to HE15
- N is the number of metering intervals in the settlement hour that the resource is within the failure period
- As resource failed all hours of the failure period,
 N=12 for all hours

Step 2: Determine the GCC for each hour

- 1 x OP(PD_QSI)		
HE	-1 x OP(PD_LMP,PD_QSI,PD_BE)	Result
13	-1x(36\$/MWh x 100MW - 35\$/MWh x 100MW) =	-100
14	-1x(42\$/MWh x 150MW - 40\$/MWh x 50MW - 35\$/MWh x 100MW) =	-800
15	-1x(42\$/MWh x 150MW - 40\$/MWh x 50MW - 35\$/MWh x 100MW) =	-800

Step 2: Determine the GCC for each hour

GFC_GCC = -1 x (PD_SU_Ratio x SU_INCR+ SNL - OP(PD_QSI)				
HE	PD_SU_Ratio x SU_INCR	SNL	-OP(PD_QSI)	Hourly GCC
13	2,500	900	-100	-3,300
14		900	-800	-100
15		900	-800	-100
	Total			-3,500

Step 3: Determine the prorating factor for GCC - M1 M1 = $1 - \Sigma AQEI/\Sigma PD_Qty$

Total Quantity of Injection and PD Schedule			
HE	AQEI	PD_QSI	
13	50	100	
14	0	150	
15	0	150	
Total	50	400	

The quantity of injection and quantity of PD schedule are summed over the entire failure period for the calculation of M1

 $M1 = 1 - \Sigma AQEI / \Sigma PD_Qty = 1 - 50 / 400 = 7/8$

Step 4: Determine GCC

GCC = SUM of Hourly GCC x M1 = -3,500 x 7/8 = <u>-3062.5</u>

- PD engine issues a commitment for the resource from HE11 to HE14, and issued an extension for HE15
- Resource has binding PD advisory schedules at binding start-up (issued at 7:15) from HE11 to HE15 and binding PD advisory schedule at extension for HE15 to HE16
- Resource completes its MGBRT but drops below MLP during extension at HE15 interval 1

RT Price and Schedule			
HE	RT_LMP (\$)	RT_QSI (MW)	
11	40	100	
12	40	100	
13	50	100	
14	50	100	
15	50	50	
16	50	0	

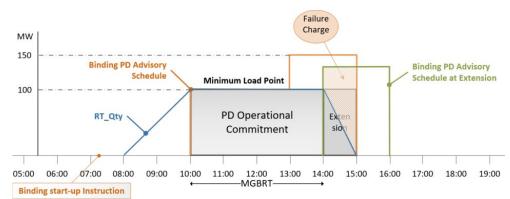
Daily Generation Data		
MGBRT	4 hrs	
MGBDT	2 hrs	
MLP	100 MW	

• The energy offers are the same for all of the scheduled hours

Start-Up Offer \$	PD Energy Offers (BE)		
(PD_BE_SU)	Quantity (MW)	Price (\$/MWh)	PQ #
5,00	0	35	1
	100	35	2
SNL Offer \$	200	40	3
(PD_BE_SNL)	300	50	4
1 90			

• The binding PD advisory schedule at 7:15 schedules the resource from HE11 to HE15 and the binding PD advisory schedule at extension schedules the resource for HE15 to HE16

PD Advisory Price and Schedule				
HE	PD_LMP@BSUI		PD_LMP@Ext	PD_QSI@Ext
11	35	100		
12	35	100		
13	35	100		
14	40	150		
15	40	150	42	130
16			42	130


Determine the failure period for GFC calculation

<u>Failure Event:</u> Failing to complete its extended pre-dispatch operational commitment, where the extension period is still within the binding pre-dispatch advisory schedule

<u>Failure Period:</u> From the first metering interval where the GOG-eligible resource has a real-time schedule less than its minimum loading point until the earlier of:

- the end of the binding pre-dispatch advisory schedule issued at the time of start-up notice; or
- the end of the binding pre-dispatch advisory schedule at the time of extension.

HE	Period Definition
15	Failure hour (All intervals)

GFC_MPC is calculated as:

 $GFC_MPC = -1 \times (RT_LMP - PD_LMP) \times (PD_QSI - AQEI)$

	GFC_MPC		
HE	-1 x (RT_LMP - PD_LMP) x (PD_QSI - AQEI)	МРС	
15	-1 x (50 - 42) x (130 - 50) =	-640	

Step 1: Determine the prorating factor for Start-up Offer - PD_SU_Ratio

As the pre-dispatch operational commitment violated by the generator failure is an extended pre-dispatch operational commitment, then

PD_SU_Ratio = 0

 $SU_INCR = 0$

Step 2: Determine the GCC for each hour

GFC_GCC = -1 x (PD_SU_Ratio x SU_INCR+ SNL - OP(PD_QSI)

SNL Cost			
HE	N - # of Inj Int	PD_BE_SNL x N/12	Result
15	12	900 x 12/12 =	900

- The speed-no-load will be calculated for each hour of the failure period for HE15
- N is the number of metering intervals in settlement hour that the resource within the failure period

✤ As resource failed all intervals of the failure hour, N=12

- 1 x OP(PD_QSI)		
HE	-1 x OP(PD_LMP,PD_QSI,PD_BE)	Result
15	-1x(42\$/MWh x 130MW - 40\$/MWh x 30MW - 35\$/MWh x 100MW) =	-760

Step 2: Determine the GCC for each hour

GFC_GCC = -1 x (PD_SU_Ratio x SU_INCR+ SNL - OP(PD_QSI)

GF	GFC_GCC = -1 x (PD_SU_Ratio x SU_INCR+ SNL - OP(PD_QSI)				
HE	PD_SU_Ratio x SU_INCR	SNL	-OP(PD_QSI)	Hourly GCC	
15		900	-760	-140	
	Total				

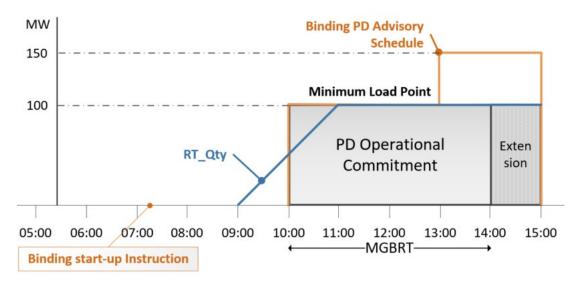
Step 3: Determine the prorating factor for GCC - M1

 $M1 = 1 - \Sigma AQEI / \Sigma PD_Qty$

Total Quantity of Injection and PD Schedule			
HE	AQEI	PD_QSI	
15	50	130	
Total	50	130	

The quantity of injection and quantity of PD schedule are summed over the entire failure period for the calculation of M1

 $M1 = 1 - \Sigma AQEI / \Sigma PD_Qty = 1 - 50 / 130 = 8 / 13$


Step 4: Determine GCC

GCC = SUM of Hourly GCC x M1 = -140 x 8/13 = -86.15

- PD engine issues a binding start-up instruction at 7:15 for a commitment from HE11 to HE14
- The resource has binding PD advisory schedule at 7:15 from HE11 to HE15
- Resource achieves MLP late after the start of its commitment period at HE12 interval 1

RT Price and Schedule			
HE RT_LMP (\$) RT		RT_QSI (MW)	
11	45	75	
12	40	100	
13	50	100	
14	50	100	
15	50	100	

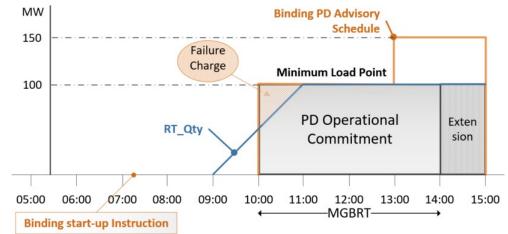
Daily Generation Data		
MGBRT	4 hrs	
MGBDT	2 hrs	
MLP	100 MW	

• The energy offers are the same for all of the scheduled hours

	PD Energy Offe		Start-Up Offer \$	
PQ #	Price (\$/MWh)	Quantity (MW)		(PD_BE_SU)
1	35	0		5,000
2	35	100	Г	
3	40	200		SNL Offer \$
4	50	300		(PD_BE_SNL)
				900

• The binding PD advisory schedule at 7:15 schedules the resource from HE11 to HE15

PD Advisory Price and Schedule					
HE	PD_LMP@BSUI	PD_QSI@BSUI			
11	36	100			
12	36	100			
13	36	100			
14	40	150			
15	40	150			



Determine the failure period for GFC calculation

<u>Failure Event:</u> Failing to reach minimum loading point by the first hour of the pre-dispatch operational commitment

<u>Failure Period:</u> From the first metering interval where a GOG-eligible resource has a pre-dispatch operational commitment, until the last metering interval where the GOG-eligible resource has a real-time schedule less than its minimum loading point

HE Period Definition		
11	Failure hour (All intervals)	

GFC_MPC is calculated as:

 $GFC_MPC = -1 \times (RT_LMP - PD_LMP) \times (PD_QSI - AQEI)$

	GFC_MPC				
HE	-1 x (RT_LMP - PD_LMP) x (PD_QSI - AQEI)	МРС			
11	-1 x (45 - 36) x (100 - 75) =	-225			

Step 1: Determine the prorating factor for Start-up Offer - PD_SU_Ratio PD_SU_Ratio = Min(1,MLP_INJ/MGBRT)

* MLP_INJ is the number of metering intervals within the MGBRT period that the resource is injecting below MLP

MLP_INJ = 12 intervals x 1 hour = 12

* MGBRT is the number of metering intervals of the minimum generation block run-time

MGBRT = 12 intervals x 4 hours = 48

PD_SU_Ratio = Min(1,MLP_INJ/MGBRT) = Min(1,12/48) = <u>1/4</u>

Step 2: Determine the GCC for each hour

GFC_GCC = -1 x (PD_SU_Ratio x SU_INCR+ SNL - OP(PD_QSI)

PD_SU_Ratio x SU_INCR				
HE	PD_SU_Ratio	SU_INCR = PD_BE_SU	PD_SU_Ratio x SU_INCR	Result
11	1/4	5,000	= 1/4 x 5,000 =	1,250

The start-up offer associated with the first hour (HE11) of the commitment period is considered in the GFC_GCC calculation

Step 2: Determine the GCC for each hour

GFC_GCC = -1 x (PD_SU_Ratio x SU_INCR+ SNL - OP(PD_QSI)

SNL Cost						
HE	N - # of Inj Int	PD_BE_SNL x N/12	Result			
11	12	900 x 12/12 =	900			

- The speed-no-load will be calculated for the failure period for HE11
- N is the number of metering intervals in settlement hour that the resource within the failure period
- As resource failed for all intervals of the failure period, N=12

	- 1 x OP(PD_QSI)	
HE	-1 x OP(PD_LMP,PD_QSI,PD_BE)	Result
11	-1x(36\$/MWh x 100MW - 35\$/MWh x 100MW) =	-100

Step 2: Determine the GCC for each hour

GFC_GCC = -1 x (PD_SU_Ratio x SU_INCR+ SNL - OP(PD_QSI)

GF	GFC_GCC = -1 x (PD_SU_Ratio x SU_INCR+ SNL - OP(PD_QSI)						
HE	PD_SU_Ratio x SU_INCR	SNL	-OP(PD_QSI)	Hourly GCC			
11	1,250	900	-100	-2,050			
			Total	-2,050			

Step 3: Determine the prorating factor for GCC - M1

 $M1 = 1 - \Sigma AQEI / \Sigma PD_Qty$

Total Quantity of Injection and PD Schedule						
HE	AQEI	PD_QSI				
11	75	100				
Total	75	100				

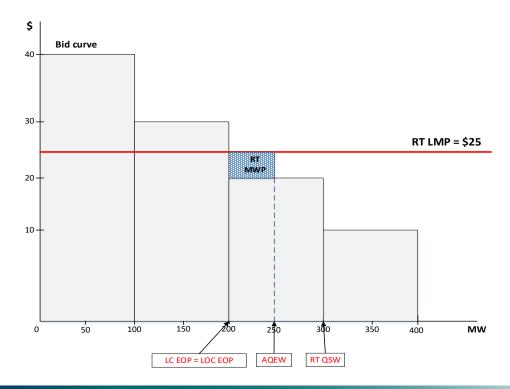
The quantity of injection and quantity of PD schedule are summed over the entire failure period for the calculation of M1

 $M1 = 1 - \Sigma AQEI / \Sigma PD_Qty = 1 - 75 / 100 = 1/4$

Step 4: Determine GCC

GCC = SUM of Hourly GCC x M1 = $-2,050 \times 1/4 = -512.5$

Additional Examples: Real-Time Make-Whole Payment(RT-MWP)


Scenario 2: Load is uneconomically scheduled for energy above it's EOP

Energy Bids – Dispatch Data			Schedul	es, EOP, AQEI
PQ #		Quantity (MW)	Туре	Quantity (MW)
1	40	0	RT QSI	300 MW
2	40	100	AQEI	250 MW
3	30	200	LC EOP	200 MW
4	20	300	LOC EOP	200 MW
5	10	400	DAM_QSW	0 MW

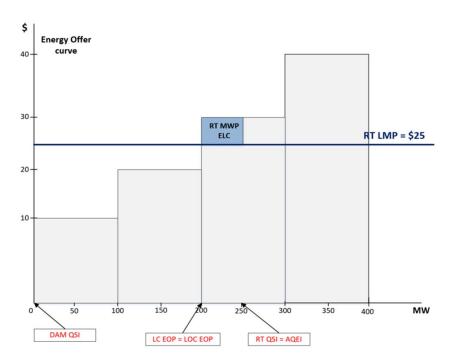
RT Prices	\$
RT LMP	\$25

$$RT_MWP = \sum_{t=1}^{T} Max(0, RT_ELC + RT_OLC) + Max(0, RT_ELOC) + RT_OLOC)$$

RT Lost Cost Calculation					
	OP (Min(RT_QSW, AQEW))	OP (RT_LC_EOP)			
Revenue	250MW X \$25 =	200MW X \$25 =			
	\$6,250		\$5,000		
	100MW X \$40 +				
	100MW X \$30 +	100MW X \$40 +			
Costs	50MW X \$20 =	100MW X \$30 =			
	\$8,000		\$7,000		
Total	\$6250 - \$8000 =	\$5000 - \$7000 =			
	-\$1,750		-\$2,000		
RT_ELC	Max(0, -\$1750 + \$2000) = \$250				

	RT Lost Opportunity Co	st Calculation		
	OP (RT_LOC_EOP)	OP (Max(RT_QSW, AQE	W))	
Revenue	200MW X \$25 =	250MW X \$25 =		
	\$5,000		\$6,250	
		100MW X \$40 +		
	100MW X \$40 +	100MW X \$30 +		Conclusion:
Costs	100MW X \$30 =	50MW X \$20 =		Since LOC_EOP < RT_QSI,
	\$7,000		\$8 <i>,</i> 000	resource is not eligible
				for RT _ELOC
Total	\$5000 - \$7000 =	Max(0, \$6250 - \$8000) =		
	-\$2,000		\$0.00	
RT_ELOC	-1*(\$-2000	- \$0) = \$2000		$RT_MWP = Max(0, $250) + 0 = 25

ieso Connecting Today. Powering Tomorrow.


Scenario 4: A generator is activated for operating reserve in RT

Step 1 : Calculate lost cost for energy

Energy Offers – Dispatch Data			
PQ #	Price (\$/MWh)	Quantity (MW)	
1	10	0	
2	10	100	
3	20	200	
4	30	300	
5	40	400	

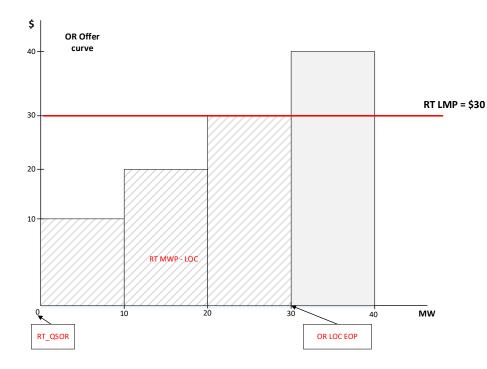
Schedule	Quantity (MW)	
RT QSI	250	
RT LC EOP	200	
DAM_QSI	100	
AQEI	250 MW	
RT LMP	\$25	

$$RT_MWP$$

= $\sum_{T}^{T} Max(0, RT_ELC + RT_OLC) + Max(0, RT_ELOC)$
+ $RT_OLOC)$

Energy RT Lost Cost Calculation			
	OP (Min(RT_QSI, AQEI))	OP (Max(DAM_QSI, RT_LC_EOP))	
Revenue	250MW X \$25 =	200MW X \$25 =	
	\$6,250	\$5,000	
Costs	100MW X \$10 + 100MW X \$20 + 50MW X \$30 =	100MW X \$10 + 100MW X \$20 =	
	\$4,500	\$3,000	
Total	\$6250 - \$4500 =	\$5000 - \$3000 =	
	\$1,750	\$2,000	
RT_ELC	-1 X MIN(0,	-1 X MIN(0, \$1750 - \$2000) = \$250	

Step 2 : Calculate lost opportunity cost for Operating Reserve


OR Offers – Dispatch Data			
PQ #	Price (\$/MWh)	Quantity (MW)	
1	10	0	
2	10	10	
3	20	20	
4	30	30	
5	40	40	

Schedule	Quantity (MW)
RT QSOR	0
DAM QSOR	30
RT LOC OR EOP	30

RT PROR	\$30

The generator is activated for 30MW that was scheduled in DAM, therefore it will need to buy-back the 30MW at \$30 in RT, however it is eligible for lost opportunity cost.

Operating Reserve RT Lost Opportunity Cost Calculation			
	OP (RT_OR_LOC_EOP)	OP (RT_QSOR)	
Revenue	30MW X \$30 =	(
	\$900	\$0	
	10MW X \$10 +		
	10MW X \$20 +		
Costs	10MW X \$30 =		
	\$600	\$0	
Total	\$900 - \$600 =		
	\$300	\$(
RT OLOC	\$300 - \$0 = \$300		

Step 3 : Compute RT_MWP for energy and OR

 $RT_MWP_{k,h}^{m} = \sum_{k,h}^{T} Max(0, RT_ELC_{k,h}^{m,t} + RT_OLC_{k,h}^{m,t}) + Max(0, RT_ELOC_{k,h}^{m,t}) + RT_OLOC_{k,h}^{m,t})$

RT_MWP = Max(0, \$250) + \$300 = \$550

Next Steps

Next Steps:

Throughout December and January: Stakeholders can review appendix material, and request additional examples or scenarios through engagement@ieso.ca

Mid-January: Segmented discussions with stakeholders to review examples/scenarios (Sign Up: <u>https://www.ieso.ca/en/Market-</u> <u>Renewal/Stakeholder-Engagements/Implementation-Engagement-</u> <u>Market-Rules-and-Market-Manuals</u>

February 21: Comments/feedback on market rules and market manuals due to IESO

ieso.ca

1.888.448.7777

customer.relations@ieso.ca

engagement@ieso.ca

