Market Development Advisory Group (MDAG)

May 30, 2019

Agenda

9:00 am Welcome and Introduction

9:15 am Background on Operating Reserve

10:45 am Break

11:00 am Overview of Market Surveillance Panel (MSP)

recommendations

11:30 am Innovation Roadmap and how it interfaces with the MDAG

Workplan

12:00 pm Adjourn

Welcome and Introduction

Background on Operating Reserves

What is Operating Reserve (OR)?

- Operating reserve is available capacity held in excess of what is required to serve actual load
- Can be called by the IESO with short notice to manage an unexpected mismatch between generation and consumption
- Three types of reserves
 - Regulating
 - Contingency
 - Flexibility

Types of OR

Type of OR	Requirement and Usage
Regulating – for second to second balancing and frequency control within dispatch interval	 Must meet NERC Control Performance Standards (CPS) Automatically deployed within dispatch process Not co-optimized with energy +/- 100 MW minimum requirement
<u>Contingency</u> – for unexpected loss of system elements	 Must meet NERC & NPCC reliability requirements 10-minute reserve to cover largest contingency (at least 25% must be synchronized) 30-minute reserve to cover ½ of 2nd contingency Scheduled through the IESO market
<u>Flexibility</u> – for variability and uncertainty in future dispatch intervals	 Additional 200MW of 30-minute reserve above contingency amounts Scheduled through the IESO market

OR Markets

- The IESO administers three separate OR markets in addition to the energy market for contingencies and flexibility
 - 10-minute spinning reserve (10S)
 - 10-minute non-spinning reserve (10N)
 - 30-minute reserve (30R)

Participating in the OR Market

- The current market allows dispatchable generators and loads, and some imports to participate offer OR
- The resource must have a bid or offer in the energy market equal or greater to the quantity of OR offered
 - E.g. a generator offering 10 MW of 30R must also offer at least 10 MW into the energy market
- Prices and schedules are determined every five minutes for each reserve class
- OR offered but not scheduled for one class may be scheduled for a lower class
 - E.g. offers for 10S could be scheduled to meet 10N or 30R requirements

OR Activation

- Activation refers to using the resources scheduled for OR to produce energy
- OR may be activated by the IESO in response to
 - A sudden unexpected increase in demand
 - A generation loss or when several generators are unable to follow their dispatch instructions
 - The loss of transmission limiting or eliminating access to available supply
- A resource called for activation must provide energy to the OR amount scheduled for up to 1 hour
 - Within 10-minutes for 10S/10N, and 30-minutes for 30R

Scheduling of Operating Reserve

- The market dispatch algorithm ensures that the objectives of meeting energy and OR requirements are achieved at the lowest cost
- Joint optimization/co-optimization of energy and OR is utilized such that energy bids and offers, and OR offers are simultaneously evaluated

Energy and OR Scheduling

Gen B

How should the generators be scheduled to meet the 20 MW load and 10 MW of OR?

Gen A

Gen A offers

Energy: 10 MW @ \$23/MWh

OR: 10 MW @ \$4/MW

Gen B offers

Energy: 10 MW @ \$24/MWh

OR: 10 MW @ \$2/MW

20 MW Load

> 10 MW OR

Gen C offers

Energy: 15 MW @ \$25/MWh

OR: 15 MW @ \$4/MW

Gen C

Scheduling for Cheapest Energy First

Energy cost:

 $10 \times 23 + 10 \times 24 = \470

OR cost:

 $10 \times 4 = 40

Total cost:

\$470+\$40 = \$510

Gen B offers

Energy: 10 MW @ \$24/MWh

OR: 10 MW @ \$2/MW

Gen B

10 MWh Energy Gen A

10 MWh
Energy

20 MW

Load

10 MW

OR

Gen A offers

Energy: 10 MW @ \$23/MWh

OR: 10 MW @ \$4/MW

Gen C offers

Energy: 15 MW @ \$25/MWh

OR: 15 MW @ \$4/MW

Gen C

l0 MW OR But this is not the cheapest solution...

Co-optimization Math

$$\underbrace{\text{Energy Cost}}_{i} \underbrace{\text{Corrector}}_{\text{Cost}} \underbrace{\text{Corrector}}_{\text{Cost}} \underbrace{\text{Corrector}}_{\text{Corrector}} \underbrace{\text{Corrector}}_{$$

subject to

$$\sum_{Generator} (Energy Q_i) = Demand$$

 $\sum_{Generator} (OR \ Q_i) = OR \ Requirement$

 $Energy Q_i + OR Q_i \leq Capacity_i$

Supply to meet demand

Supply to OR needs

Energy + OR cannot exceed generator capacity

Co-optimization of Energy and OR

Energy cost:

 $10 \times 23 + 10 \times 25 = 480

OR cost:

 $10 \times 2 = 20

Total cost:

\$470+\$40 = \$500

Gen B Offers

Energy: 10 MW @ \$24/MWh

OR: 10 MW @ \$2/MW

Gen B

10 MW OR Gen A

10 MWh Energy

20 MW

Load

10 MW OR Gen A offers

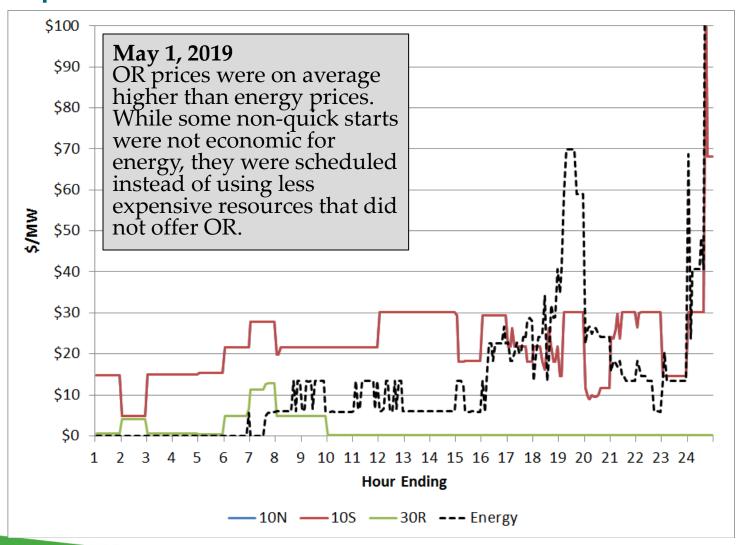
Energy: 10 MW @ \$23/MWh

OR: 10 MW @ \$4/MW

Gen C Offers

Energy: 15 MW @ \$25/MWh

OR: 15 MW @ \$4/MW


Gen C

10 MWh
Energy

This is the cheapest solution

Co-optimization Market Outcome

OR Shortage

- During periods of high demand and/or tight supply the dispatch algorithm prioritizes to ensure that energy requirements are met first and remaining available capacity may be insufficient to meet OR requirements
- Penalty pricing is used to prioritize meeting energy requirements first

Penalty Pricing

+\$6,000 for **Energy** shortfall +\$4,000 for **OR** shortfall

Gen B Offers

Energy: 10 MW @ \$24/MWh

OR: 10 MW @ \$2/MW

Gen B

10 MW OR

No Energy or OR shortfall

No penalty prices apply. Total system cost is \$500.

Gen A Offers

Energy: 10 MW @ \$23/MWh

OR: 10 MW @ \$4/MW

Gen C Offers

Energy: 15 MW @ \$25/MWh

OR: 15 MW @ \$4/MW

20 MW

Gen A

10 MWh

Energy

Load

10 MW OR

Gen C

What happens if the load increases to 30 MW?

17

Evaluate Energy Shortfall

+\$6,000 for **Energy** shortfall +\$4,000 for **OR** shortfall

Gen B Offers

Energy: 10 MW @ \$24/MWh

OR: 10 MW @ \$2/MW

Gen B

10 MW OR

Gen A

10 MWh Energy

30 MW

Load

10 MW

Energy shortfall: \$6,000

penalty applies. Total cost is \$625 + \$6,000 = \$6,625.

Gen A Offers

Energy: 10 MW @ \$23/MWh

OR: 10 MW @ \$4/MW

Gen C Offers

Energy: 15 MW @ \$25/MWh

OR: 15 MW @ \$4/MW

Gen C

OR

Evaluate OR Shortfall

+\$6,000 for Energy shortfall +\$4,000 for OR shortfall

Gen A

10 MWh Energy OR shortfall: \$4,000

penalty applies. Total cost

is \$735 + \$4,000 = \$4,735.

Gen A Offers

Energy: 10 MW @ \$23/MWh

OR: 10 MW @ \$4/MW

Gen B Offers

Energy: 10 MW @ \$24/MWh

OR: 10 MW @ \$2/MW

Gen B

5 MWh Energy

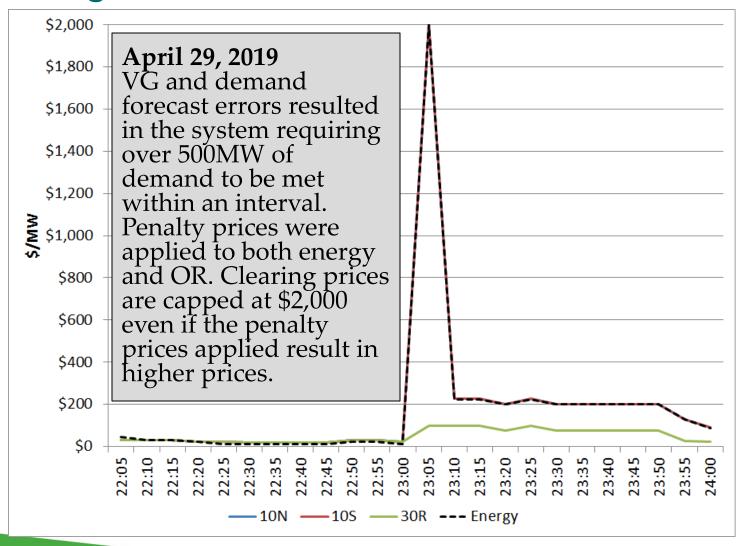
5 MW OR

30 MW Load

> 10 MW OR

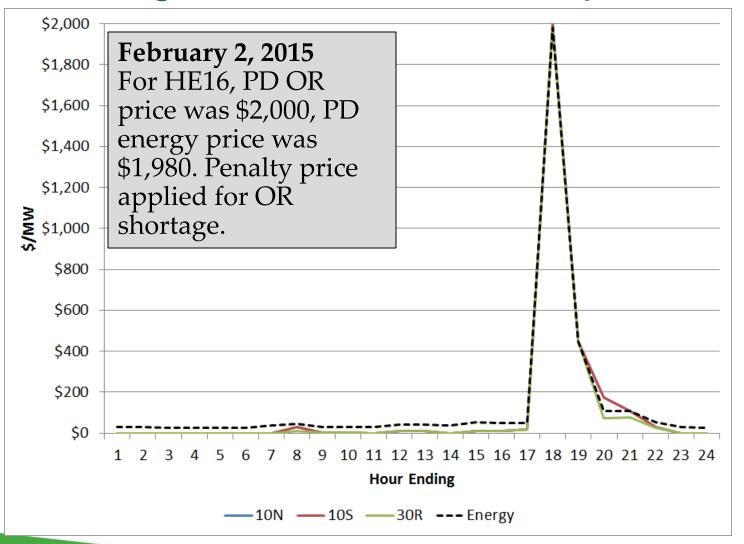
Gen C Offers

Energy: 15 MW @ \$25/MWh


OR: 15 MW @ \$4/MW

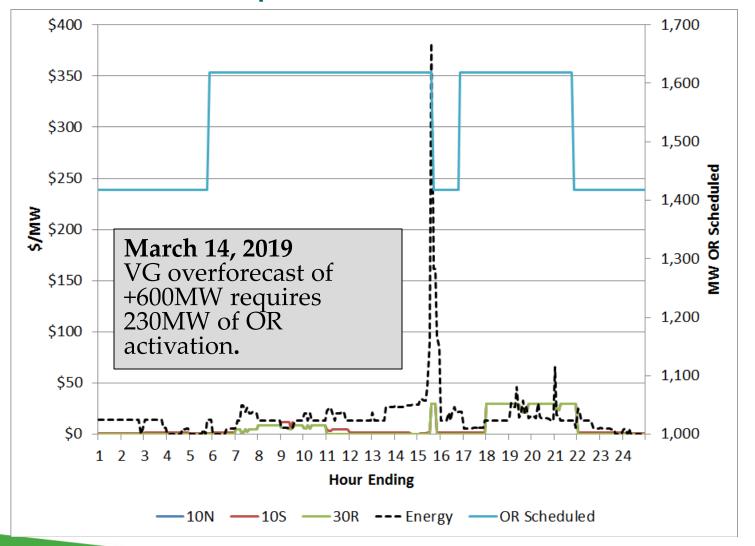
Gen C

15 MWh Energy This is the cheapest solution and also meets demand



Shortage Condition in Real-Time

OR Shortage Condition in Pre-Dispatch



OR Activation

- When IESO activates OR, resources scheduled for OR are activated based economics and system conditions
- During OR activation, the OR requirement may be decreased by the amount activated
- The reduced OR requirement after activation must be recovered within the timeframes specified by the NPCC

Activation Example

MSP Recommendations

Purpose

 To provide MDAG members with an overview of the Market Surveillance Panel and its role in initiating market development projects

Who is the Market Surveillance Panel?

- The Market Surveillance Panel (MSP) is a Panel of the Ontario Energy Board (OEB)
- The MSP's mandate is set out in OEB By-law #3:
 - Monitoring activities and behaviour and recommending remedial action
 - Investigating market activities and the behaviour of market participants or the IESO and making recommendations related to the results of its investigations
 - Reporting on the results of its monitoring and investigations

Panel Members

Glenn Leslie (Chair)
Donald Dewees*
George Pessione
*Member of MDAG

How Does the MSP Report on their Findings?

Monitoring Reports

(semi-annual)

The MSP report has three sections:

- A general assessment of the market
- 2. Specific market outcomes (such as pricing, demand, supply, etc.)
- 3. An analysis of anomalous market outcomes

Other Reports (as needed)

- Investigation reports (eg possible gaming investigations)
- Reviews of market issues (eg CMSC, ICI program)

- MSP findings can lead to issuing recommendations, usually directed to the IESO
- Panel reports are published on the <u>OEB's website</u>; IESO's responses are posted on the OEB site and an annual status update is published on the IESO's <u>website</u>

Identifying Market Change Initiatives

- MSP recommendations are one source of market change initiatives
- The IESO must prioritize all possible market change initiatives
- The MDAG will play a key role in helping the IESO evaluate and prioritize potential market change initiatives

What Does the IESO do with MSP Reports?

- On each report the IESO carefully reviews the Panel's analysis and recommendations
 - The results of the IESO's review may lead to further study, steps to implement a change, or an explanation why a change is not necessary
- The IESO responds to Panel recommendations and considers implementation based on materiality and other priorities
- In light of Market Renewal, the IESO's response to MSP recommendations considers whether Market Renewal addresses the issue or if any change is aligned with Market Renewal

Scope of Recommendations

 MSP Recommendations can range from incremental improvements to broader market design reviews

e.g. Variable Gen. Forecast Tool or, Const-On Export Price Floor

e.g. GCG program or, TR Review

Incremental Change

Broader, Structural Change

Recommendation Complexities

- Sometimes a simple fix can be the solution but other times a deeper dive into the issue can reveal additional complexities and linkages
 - For example, setting the replacement bid price for constrainedon export transactions to \$0/MWh for CMSC calculation (*March* 2018 report)
- Factors IESO may take into consideration:
 - Impact on overall market efficiency in short and longer-term
 - Materiality
 - Reliability/Operability impacts
 - Linkages to other initiatives

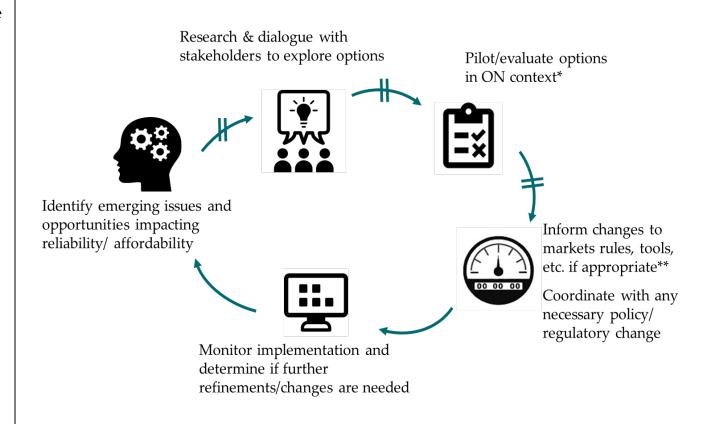
MDAG and MSP Recommendations

- The summary provided was intended to give MDAG members a better understanding of how the IESO approaches MSP recommendations
- Market Surveillance Panel recommendations will continue to be a valuable source of market initiatives to be considered by the IESO for future improvement and evolution
- The Market Development Advisory Group will have the opportunity to discuss, evaluate and prioritize future research initiatives and market enhancement projects including those that come from MSP recommendations

Innovation Roadmap and how it Interfaces with the MDAG Workplan

Purpose

- To provide a brief overview of the Innovation Roadmap and Work Plan activities underway/planned for 2019
- Discuss how activities within the Innovation Roadmap Work Plan will inform the work of MDAG /market evolution and how MDAG members can inform the work set out in the Roadmap


Background

- In 2018, IESO engaged with stakeholders to develop an Innovation Roadmap and associated Work Plan
- The Roadmap establishes priorities for understanding and preparing for the change, challenge and opportunities facing the IESO and Ontario's electricity sector through 2030 to support a cost-effective and reliable electricity system (see Appendix A for priorities)
- Stakeholders emphasized the need for objective research to better understand a range of challenges and opportunities
- IESO's Innovation Roadmap Work Plan sets out the specific initiatives that IESO will engage in or support
 - The Innovation Roadmap and Work Plan are available here http://ieso.ca/en/Get-Involved/Innovation/Innovation-Roadmap

Overview of Decision Making Framework for Initiatives to Enable Innovation in Support of System Affordability and Reliability

- Decision gates (||): evaluate outcomes/determine whether and how to move forward
- *Pilot in Ontario context where necessary (e.g. understand ON-specific market, regulatory, policy barriers and test possible solutions)
- **Any proposals for IESO capital projects require a business case that includes a cost-benefit analysis and are weighed against other proposed projects to maximize impact of limited budget on ratepayer outcomes; MDAG input will inform how priorities are set

Opportunities exist for MDAG involvement throughout this cycle

Innovation Roadmap and MDAG

- The IESO will bring Innovation Roadmap initiatives to the MDAG for discussion/input when:
 - Initiatives have the potential to materially impact the IESO Administered Markets in the future,
 - Initiatives would benefit from MDAG input, and/or
 - The IESO believes MDAG members would benefit from being informed about planned or ongoing initiatives
- Our objective is to enable MDAG members to inform and be informed by markets related discussions through a single IESO forum
- MDAG will be an important input to how IESO prioritizes implementation of innovative solutions that are found to improve affordability/reliability (e.g. enabling new resources in IESO markets)

Research and White Papers In progress/2019 start

- Research and white papers will create a shared, fact-based understanding of emerging economic, technical, environmental, and social issues likely to impact the electricity sector
- They will provide transparent and objective information to inform policy, planning and investment decisions

	Project Title	Details
1	Evolving consumer preferences, choices and behaviours	Examination of customers attitudes/preferences for reliability, cost, supply mix to understand preferences with regards to future market participation/design and potential pace of consumer uptake of DERs/other technology
2	Non-wires alternatives (NWA): markets and transmission-distribution interoperability	Explore design options for non-wires alternatives (NWAs) markets and requirements for the transmission-distribution interface to ensure reliable system and local market operations
3	Distribution sector evolution: structural options [with ETNO]	 Examine options for allocation of roles/responsibilities for DER ownership, operations, etc. in a high DER future Final to be released prior to IESO Summit in June
4	System cost allocation options: potential impacts on wholesale markets, system operations and innovation	Investigate options for allocating costs incurred through the renewed markets and explore the impact of options on market efficiency/reliability
5	Conceptual framework for integration of distributed energy resources (DERs) in IESO-administered markets	Explore options for the expanded participation of DERs in the IESO administered markets

Demonstration/Evaluation Projects In progress/2019 start

- Demonstration and evaluation projects will identify and evaluate the potential of new solutions to improve electricity system reliability and cost-effectiveness
- Projects will help develop understanding of market, system, policy, and regulatory barriers and potential solutions to enable new resources to compete in IESO markets

	Project Title	Details
1	Transactive Energy demonstration projects testing methods for generating distribution-level locational marginal price (DLMP) signals to enable economically efficient and reliable integration of DER	With Opus One Solutions, Toronto Hydro, Hydro Ottawa and Lakeland Power, test methods for generating distribution- level locational price signals to enable economically efficient and reliable integration of DERs on the grid
2	Phase 1 Energy Storage Program: Inform IESO energy storage integration with real-world field research from Phase 1 facilitates	Gain early experience with the registration, commissioning and operation of energy storage facilities
3	Alternative Technologies for Regulation (ATR) program	Explore the merits of two new wholesale market products that leverage the fast-ramping capabilities of energy storage: fast regulation service and synthetic inertia service
4	Non-wires alternatives to traditional transmission and distribution assets (IESO York Region NWA Demonstration Project)	Demonstrate an NWA market for DERs, with a focus on the transmission-distribution interface, to provide both system-level and local electricity services in York Region
5	Models for energy efficiency to compete in IESO- administered markets – targeted call through Grid Innovation Fund	Pilot a transitional auction-based mechanism for procuring EE to inform decisions enabling the resource to compete in the renewed IESO-administered markets

Thank you for joining us!

Questions?

Next MDAG Meeting: June 27

