INNOVIA GEO

Decarbonizing Heating and Cooling From the Ground Up

Overview of project and objectives

Project Description:

Demonstrate a geo-exchange system integrated into helical steel piles to provide efficient geothermal space heating and cooling to a building in SW Ontario.

Objectives:

- 1. Demonstrate operational viability of full-scale system
- 2. Compare performance versus conventional vertical closed loop geothermal systems
- 3. Evaluate energy and emissions reduction potential versus alternative HVAC systems

© 2024 Innovia Geo | www.innoviageo.com

Comparison vs conventional ground loops

New paradigm for GEO: low-flow and high-volume system

Project Location: Eby Rush TS

INNOVIAI GEO

Eby Rush System Schematic

INNOVIA

Eby Rush System Installation

Mechanical system and control system

INNOVIA

Challenge experienced during installation

Problem: Leaking found at three pile section couplings during installation	the threaded not be new instantian in the threaded not be new instantian in the threaded not be new instantian if the threaded not be new instanti
Immediate Solutions:	 Cured-in-place pipe patches Heat exchanger to separate fluid loops
Long-Term Solutions Evaluated:	 QC processes to test joints Interior plastic pipe grouted inside of steel pile

Objective 1: Demonstrate operational viability of system

- 1. Functional tests completed from summer 2021 to summer 2023
- 2. System operated in both heating and cooling within industry standard operating temperature ranges for closed-loop geothermal systems
- 3. Steady state rating of ~2 Tons for the pile array was validated

Objective 2: Comparison vs. Conventional Ground Loop

- 1. Pile Array required substantially less energy for pumping
 - <20% pumping power versus the ground loop (scaling up to 6-Tons)
- 2. Pile Array was able to provide better supply temperatures during many comparative tests
- 3. Large fluid volume of Pile Array provided unique thermal properties:
 - 1. GEOPiles could be "overloaded" above steady-state rating for periods of time
 - 2. GEOPiles could "recharge" when system was off or below steady-state rating
- 4. Opportunities for active control strategies to optimize based on:
 - 1. System efficiency
 - 2. Electricity prices
 - 3. Emissions

- 1. Pile Array was able to operate significantly above the 2 Ton steady-state rating for significant (multi-hour) periods of time
- 2. Potential to utilize as a "peaking" capacity

for several hours (3 times the steady-state rating of 2 Tons)

Example: "Recharging" Property

Example: Performance vs Conventional Loop

Objective 3: Comparison versus alternative HVAC systems

Energy and Emissions Reductions

	GEOPiles vs Gas + A/C	GEOPiles vs ccASHP	ccASHP vs Gas + A/C
Energy Reductions (ekWh)	11,428	3,091	8,337
Energy Reductions (%)	72%	42%	53%
GHG Reductions (T CO_2e)	2.6	0.1	2.6
Emissions Reductions (%)	96%	42%	92%
Annual Cost Savings	\$407	\$402	\$5

Туре	Detached Home	
Location	SW Ontario	
Description	2,000 sq ft	
System Size	2 Tons	

Objective 3: Comparison versus alternative HVAC systems

Electrical Load Comparison: GSHP vs ASHP

	ccASHP	GSHP
Peak Winter Load	4.51 kW*	1.83 kW
Peak Summer Load	0.85 kW	0.54 kW

*The selected ccASHP was unable to meet the peak heating load due to capacity reductions from cold temperatures during the peak heating time. If a backup electrical resistance heating system were to be utilized, the peak winter load would exceed the value shown here.

Research collaboration next steps

Achievements:

- 1. 3X research papers published
- 2. 3X research papers under review for publication
- 3. 3X successful master's theses
- 4. Received multi-year \$300k NSERC/Mitacs research grant
- 5. Supported research of 3X undergrads, 4X master's, 1X PhD, and 3X post-docs

Current Research Objectives:

- 1. Modeling techniques to expedite system analysis
- 2. Control strategies to beneficially utilize peaking and recovery properties
- 3. Integration with other resources to utilize thermal storage of large fluid volume
 - 1. Active collaboration with University of Calgary to analyze integration with Solar PVT panels
 - 2. Plans to analyze integration with drain heat recovery systems and radiative cooling panels